Appendix D

Probability Distributions

This appendix archives a number of useful results from texts by Papoulis [44], Lee [33] and Cover [12]. Table 16.1 in Cover (page 486) gives entropies of many distributions not listed here.

D. 1 Transforming PDFs

Because probabilities are defined as areas under PDFs when we transform a variable

$$
\begin{equation*}
y=f(x) \tag{D.1}
\end{equation*}
$$

we transform the PDF by preserving the areas

$$
\begin{equation*}
p(y)|d y|=p(x)|d x| \tag{D.2}
\end{equation*}
$$

where the absolute value is taken because the changes in x or $\mathrm{y}(d x$ and $d y)$ may be negative and areas must be positive. Hence

$$
\begin{equation*}
p(y)=\frac{p(x)}{\left|\frac{d y}{d x}\right|} \tag{D.3}
\end{equation*}
$$

where the derivative is evaluated at $x=f^{-1}(y)$. This means that the function $f(x)$ must be one-to-one and invertible.

If the function is many-to-one then it's inverse will have multiple solutions $x_{1}, x_{2}, \ldots, x_{n}$ and the PDF is transformed at each of these points (Papoulis' Fundamental Theorem [44], page 93)

$$
\begin{equation*}
p(y)=\frac{p\left(x_{1}\right)}{\left|\frac{d y}{d x_{1}}\right|}+\frac{p\left(x_{2}\right)}{\left|\frac{d y}{d x_{2}}\right|}+\ldots+\frac{p\left(x_{n}\right)}{\left|\frac{d y}{d x_{n}}\right|} \tag{D.4}
\end{equation*}
$$

D.1.1 Mean and Variance

For more on the mean and variance of functions of random variables see Weisberg [64].

Expectation is a linear operator. That is

$$
\begin{equation*}
E\left[\left(a_{1} x+a_{2} x\right)\right]=a_{1} E[x]+a_{2} E[x] \tag{D.5}
\end{equation*}
$$

Therefore, given the function

$$
\begin{equation*}
y=a x \tag{D.6}
\end{equation*}
$$

we can calculate the mean and variance of y as functions of the mean and variance of x.

$$
\begin{align*}
E[y] & =a E[x] \tag{D.7}\\
\operatorname{Var}(y) & =a^{2} \operatorname{Var}(x)
\end{align*}
$$

If y is a function of many uncorrelated variables

$$
\begin{equation*}
y=\sum_{i} a_{i} x_{i} \tag{D.8}
\end{equation*}
$$

we can use the results

$$
\begin{align*}
E[y] & =\sum_{i} a_{i} E\left[x_{i}\right] \tag{D.9}\\
\operatorname{Var}[y] & =\sum_{i} a_{i}^{2} \operatorname{Var}\left[x_{i}\right] \tag{D.10}
\end{align*}
$$

But if the variables are correlated then

$$
\begin{equation*}
\operatorname{Var}[y]=\sum_{i} a_{i}^{2} \operatorname{Var}\left[x_{i}\right]+2 \sum_{i} \sum_{j} a_{i} a_{j} \operatorname{Var}\left(x_{i}, x_{j}\right) \tag{D.11}
\end{equation*}
$$

where $\operatorname{Var}\left(x_{i}, x_{j}\right)$ denotes the covariance of the random variables x_{i} and x_{j}.

Standard Error

As an example, the mean

$$
\begin{equation*}
m=\frac{1}{N} \sum_{i} x_{i} \tag{D.12}
\end{equation*}
$$

of uncorrelated variables x_{i} has a variance

$$
\begin{align*}
\sigma_{m}^{2} \equiv \operatorname{Var}(m) & =\sum_{i} \frac{1}{N} \operatorname{Var}\left(x_{i}\right) \tag{D.13}\\
& =\frac{\sigma_{x}^{2}}{N}
\end{align*}
$$

where we have used the substitution $a_{i}=1 / N$ in equation D.10. Hence

$$
\begin{equation*}
\sigma_{m}=\frac{\sigma_{x}}{\sqrt{N}} \tag{D.14}
\end{equation*}
$$

Figure D.1: The Gaussian Probability Density Function with $\mu=3$ and $\sigma=2$.

D. 2 Uniform Distribution

The uniform PDF is given by

$$
\begin{equation*}
U(x ; a, b)=\frac{1}{b-a} \tag{D.15}
\end{equation*}
$$

for $a \leq x \leq b$ and zero otherwise. The mean is $0.5(a+b)$ and variance is $(b-a)^{2} / 12$. The entropy of a uniform distribution is

$$
\begin{equation*}
H(x)=\log (b-a) \tag{D.16}
\end{equation*}
$$

D. 3 Gaussian Distribution

The Normal or Gaussian probability density function, for the case of a single variable, is

$$
\begin{equation*}
N\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \tag{D.17}
\end{equation*}
$$

where μ and σ^{2} are the mean and variance.

D.3.1 Entropy

The entropy of a Gaussian variable is

$$
\begin{equation*}
H(x)=\frac{1}{2} \log \sigma^{2}+\frac{1}{2} \log 2 \pi+\frac{1}{2} \tag{D.18}
\end{equation*}
$$

Figure D.2: The Gamma Density for $b=1.6$ and $c=3.125$.

For a given variance, the Gaussian distribution has the highest entropy. For a proof of this see Bishop ([3], page 240).

D.3.2 Relative Entropy

For Normal densities $q(x)=N\left(x ; \mu_{q}, \sigma_{q}^{2}\right)$ and $p(x)=N\left(x ; \mu_{p}, \sigma_{p}^{2}\right)$ the KL-divergence is

$$
\begin{equation*}
D[q \| p]=\frac{1}{2} \log \frac{\sigma_{p}^{2}}{\sigma_{q}^{2}}+\frac{\mu_{q}^{2}+\mu_{p}^{2}+\sigma_{q}^{2}-2 \mu_{q} \mu_{p}}{2 \sigma_{p}^{2}}-\frac{1}{2} \tag{D.19}
\end{equation*}
$$

D. 4 The Gamma distribution

The Gamma density is defined as

$$
\begin{equation*}
\Gamma(x ; b, c)=\frac{1}{\Gamma(c)} \frac{x^{c-1}}{b^{c}} \exp \left(\frac{-x}{b}\right) \tag{D.20}
\end{equation*}
$$

where $\Gamma()$ is the gamma function [49]. The mean of a Gamma density is given by $b c$ and the variance by $b^{2} c$. Logs of gamma densities can be written as

$$
\begin{equation*}
\log \Gamma(x ; b, c)=\frac{-x}{b}+(c-1) \log x+K \tag{D.21}
\end{equation*}
$$

where K is a quantity which does not depend on x; the \log of a gamma density comprises a term in x and a term in $\log x$. The Gamma distribution is only defined for positive variables.

D.4.1 Entropy

Using the result for Gamma densities

$$
\begin{equation*}
\int p(x) \log x=\Psi(c)+\log b \tag{D.22}
\end{equation*}
$$

where $\Psi()$ is the digamma function [49] the entropy can be derived as

$$
\begin{equation*}
H(x)=\log \Gamma(c)+c \log b-(c-1)(\Psi(c)+\log b)+c \tag{D.23}
\end{equation*}
$$

D.4.2 Relative Entropy

For Gamma densities $q(x)=\Gamma\left(\boldsymbol{x} ; b_{q}, c_{q}\right)$ and $p(x)=\Gamma\left(\boldsymbol{x} ; b_{p}, c_{p}\right)$ the KL-divergence is

$$
\begin{align*}
D[q \| p] & =\left(c_{q}-1\right) \Psi\left(c_{q}\right)-\log b_{q}-c_{q}-\log \Gamma\left(c_{q}\right) \tag{D.24}\\
& +\log \Gamma\left(c_{p}\right)+c_{p} \log b_{p}-\left(c_{p}-1\right)\left(\Psi\left(c_{q}\right)+\log b_{q}\right)+\frac{b_{q} c_{q}}{b_{p}}
\end{align*}
$$

D. 5 The χ^{2}-distribution

If $z_{1}, z_{2}, \ldots, z_{N}$ are independent normally distributed random variables with zero-mean and unit variance then

$$
\begin{equation*}
x=\sum_{i=1}^{N} z_{i}^{2} \tag{D.25}
\end{equation*}
$$

has a χ^{2}-distribution with N degrees of freedom ([33], page 276). This distribution is a special case of the Gamma distribution with $b=2$ and $c=N / 2$. This gives

$$
\begin{equation*}
\chi^{2}(x ; N)=\frac{1}{\Gamma(N / 2)} \frac{x^{N / 2-1}}{2^{N / 2}} \exp \left(\frac{-x}{2}\right) \tag{D.26}
\end{equation*}
$$

The mean and variance are N and $2 N$. The entropy and relative entropy can be found by substituting the the values $b=2$ and $c=N / 2$ into equations D. 23 and D.24. The χ^{2} distribution is only defined for positive variables.

If x is a χ^{2} variable with N degrees of freedom and

$$
\begin{equation*}
y=\sqrt{x} \tag{D.27}
\end{equation*}
$$

then y has a χ-density with N degrees of freedom. For $N=3$ we have a Maxwell density and for $N=2$ a Rayleigh density ([44], page 96).

Figure D.3: The χ^{2} Density for $N=5$ degrees of freedom.

D. 6 The t-distribution

If $z_{1}, z_{2}, \ldots, z_{N}$ are independent Normally distributed random variables with mean μ and variance σ^{2} and m is the sample mean and s is the sample standard deviation then

$$
\begin{equation*}
x=\frac{m-\mu}{s / \sqrt{N}} \tag{D.28}
\end{equation*}
$$

has a t-distribution with $N-1$ degrees of freedom. It is written

$$
\begin{equation*}
t(x ; D)=\frac{1}{B(D / 2,1 / 2)}\left(1+\frac{x^{2}}{D}\right)^{-(D+1) / 2} \tag{D.29}
\end{equation*}
$$

where D is the number of 'degrees of freedom' and

$$
\begin{equation*}
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \tag{D.30}
\end{equation*}
$$

is the beta function. For $D=1$ the t -distribution reduces to the standard Cauchy distribution ([33], page 281).

D. 7 Generalised Exponential Densities

The 'exponential power' or 'generalised exponential' probability density is defined as

$$
\begin{equation*}
p(a)=G(a ; R, \beta)=\frac{R \beta^{1 / R}}{2 \Gamma(1 / R)} \exp \left(-\beta|a|^{R}\right) \tag{D.31}
\end{equation*}
$$

(a)

(b)

Figure D.4: The t-distribution with (a) $N=3$ and (b) $N=49$ degrees of freedom.

Figure D.5: The generalised exponential distribution with (a) $R=1, w=5$ and (b) $R=6, w=5$. The parameter R fixes the weight of the tails and w fixes the width of the distribution. For (a) we have a Laplacian which has positive kurtosis ($k=3$); heavy tails. For (b) we have a light-tailed distribution with negative kurtosis $(k=-1)$.
where $\Gamma()$ is the gamma function [49], the mean of the distribution is zero ${ }^{1}$, the width of the distribution is determined by $1 / \beta$ and the weight of its tails is set by R. This gives rise to a Gaussian distribution for $R=2$, a Laplacian for $R=1$ and a uniform distribution in the limit $R \rightarrow \infty$. The density is equivalently parameterised by a variable w, which defines the width of the distribution, where $w=\beta^{-1 / R}$ giving

$$
\begin{equation*}
p(a)=\frac{R}{2 w \Gamma(1 / R)} \exp \left(-|a / w|^{R}\right) \tag{D.32}
\end{equation*}
$$

The variance is

$$
\begin{equation*}
V=w^{2} \frac{\Gamma(3 / R)}{\Gamma(1 / R)} \tag{D.33}
\end{equation*}
$$

which for $R=2$ gives $V=0.5 w^{2}$. The kurtosis is given by [7]

$$
\begin{equation*}
K=\frac{\Gamma(5 / R) \Gamma(1 / R)}{\Gamma(3 / R)^{2}}-3 \tag{D.34}
\end{equation*}
$$

where we have subtracted 3 so that a Gaussian has zero kurtosis. Samples may be generated from the density using a rejection method [59].

[^0]
D. 8 PDFs for Time Series

Given a signal $a=f(t)$ which is sampled uniformly over a time period T, its PDF, $p(a)$ can be calculated as follows. Because the signal is uniformly sampled we have $p(t)=1 / T$. The function $f(t)$ acts to transform this density from one over t to to one over a. Hence, using the method for transforming PDFs, we get

$$
\begin{equation*}
p(a)=\frac{p(t)}{\left|\frac{d a}{d t}\right|} \tag{D.35}
\end{equation*}
$$

where $\|$ denotes the absolute value and the derivative is evaluated at $t=f^{-1}(x)$.

D.8.1 Sampling

When we convert an analogue signal into a digital one the sampling process can have a crucial effect on the resulting density. If, for example, we attempt to sample uniformly but the sampling frequency is a multiple of the signal frequency we are, in effect, sampling non-uniformly. For true uniform sampling it is necessary that the ratio of the sampling and signal frequencies be irrational.

D.8.2 Sine Wave

For a sine wave, $a=\sin (t)$, we get

$$
\begin{equation*}
p(a)=\frac{1}{|\cos (t)|} \tag{D.36}
\end{equation*}
$$

where $\cos (t)$ is evaluated at $t=\sin ^{-1}(a)$. The inverse sine is only defined for $-\pi / 2 \leq$ $t \leq \pi / 2$ and $p(t)$ is uniform within this. Hence, $p(t)=1 / \pi$. Therefore

$$
\begin{equation*}
p(a)=\frac{1}{\pi \sqrt{1-a^{2}}} \tag{D.37}
\end{equation*}
$$

This density is multimodal, having peaks at +1 and -1 . For a more general sine wave

$$
\begin{equation*}
a=R \sin (w t) \tag{D.38}
\end{equation*}
$$

we get $p(t)=w / \pi$

$$
\begin{equation*}
p(a)=\frac{1}{\pi \sqrt{1-(a / R)^{2}}} \tag{D.39}
\end{equation*}
$$

which has peaks at $\pm R$.

Figure D.6: The PDF of $a=R \sin (w t)$ for $R=3$.

Appendix E

Multivariate Probability Distributions

E. 1 Transforming PDFs

Just as univariate Probability Density Functions (PDFs) are transformed so as to preserve area so multivariate probability distributions are transformed so as to preserve volume. If

$$
\begin{equation*}
\boldsymbol{y}=f(\boldsymbol{x}) \tag{E.1}
\end{equation*}
$$

then this can be achieved from

$$
\begin{equation*}
p(\boldsymbol{y})=\frac{p(\boldsymbol{x})}{a b s(|\boldsymbol{J}|)} \tag{E.2}
\end{equation*}
$$

where $a b s()$ denotes the absolute value and \| the determinant and

$$
\boldsymbol{J}=\left[\begin{array}{llll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & . . & \frac{\partial y_{1}}{\partial x_{d}} \tag{E.3}\\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & . . & \frac{\partial y_{2}}{\partial x_{d}} \\
. & . & . . & . \\
\frac{\partial y_{d}}{\partial x_{1}} & \frac{\partial y_{d}}{\partial x_{2}} & . . & \frac{\partial y_{d}}{\partial x_{d}}
\end{array}\right]
$$

is the Jacobian matrix for d-dimensional vectors \boldsymbol{x} and \boldsymbol{y}. The partial derivatives are evaluated at $\boldsymbol{x}=f^{-1}(\boldsymbol{y})$. As the determinant of \boldsymbol{J} measures the volume of the transformation, using it as a normalising term therefore preserves the volume under the PDF as desired. See Papoulis [44] for more details.

E.1. 1 Mean and Covariance

For a vector of random variables (Gaussian or otherwise), \boldsymbol{x}, with mean $\boldsymbol{\mu}_{x}$ and covariance $\boldsymbol{\Sigma}_{x}$ a linear transformation

$$
\begin{equation*}
\boldsymbol{y}=\boldsymbol{F} \boldsymbol{x}+\boldsymbol{C} \tag{E.4}
\end{equation*}
$$

Figure E.1: (a) 3D-plot and (b) contour plot of Multivariate Gaussian PDF with $\boldsymbol{\mu}=[1,1]^{T}$ and $\boldsymbol{\Sigma}_{11}=\boldsymbol{\Sigma}_{22}=1$ and $\boldsymbol{\Sigma}_{12}=\boldsymbol{\Sigma}_{21}=0.6$ ie. a positive correlation of $r=0.6$.
gives rise to a random vector \boldsymbol{y} with mean

$$
\begin{equation*}
\boldsymbol{\mu}_{y}=\boldsymbol{F} \boldsymbol{\mu}_{x}+\boldsymbol{C} \tag{E.5}
\end{equation*}
$$

and covariance

$$
\begin{equation*}
\boldsymbol{\Sigma}_{y}=\boldsymbol{F} \boldsymbol{\Sigma}_{x} \boldsymbol{F}^{T} \tag{E.6}
\end{equation*}
$$

If we generate another random vector, this time from a different linear transformation of \boldsymbol{x}

$$
\begin{equation*}
z=\boldsymbol{G} \boldsymbol{x}+\boldsymbol{D} \tag{E.7}
\end{equation*}
$$

then the covariance between the random vectors \boldsymbol{y} and \boldsymbol{z} is given by

$$
\begin{equation*}
\boldsymbol{\Sigma}_{y, z}=\boldsymbol{F} \boldsymbol{\Sigma}_{x} \boldsymbol{G}^{T} \tag{E.8}
\end{equation*}
$$

The i, j th entry in this matrix is the covariance between y_{i} and z_{j}.

E. 2 The Multivariate Gaussian

The multivariate normal PDF for d variables is

$$
\begin{equation*}
N(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right) \tag{E.9}
\end{equation*}
$$

where the mean $\boldsymbol{\mu}$ is a d-dimensional vector, $\boldsymbol{\Sigma}$ is a $d \times d$ covariance matrix, and $|\boldsymbol{\Sigma}|$ denotes the determinant of $\boldsymbol{\Sigma}$.

E.2.1 Entropy

The entropy is

$$
\begin{equation*}
H(\boldsymbol{x})=\frac{1}{2} \log |\boldsymbol{\Sigma}|+\frac{d}{2} \log 2 \pi+\frac{d}{2} \tag{E.10}
\end{equation*}
$$

E.2.2 Relative Entropy

For Normal densities $q(\boldsymbol{x})=N\left(\boldsymbol{x} ; \boldsymbol{\mu}_{q}, \boldsymbol{\Sigma}_{q}\right)$ and $p(\boldsymbol{x})=N\left(\boldsymbol{x} ; \boldsymbol{\mu}_{p}, \boldsymbol{\Sigma}_{p}\right)$ the KL-divergence is

$$
\begin{equation*}
D[q \| p]=0.5 \log \frac{\left|\boldsymbol{\Sigma}_{p}\right|}{\left|\boldsymbol{\Sigma}_{q}\right|}+0.5 \operatorname{Trace}\left(\boldsymbol{\Sigma}_{p}^{-1} \boldsymbol{\Sigma}_{q}\right)+0.5\left(\boldsymbol{\mu}_{q}-\boldsymbol{\mu}_{p}\right)^{T} \boldsymbol{\Sigma}_{p}^{-1}\left(\boldsymbol{\mu}_{q}-\boldsymbol{\mu}_{p}\right)-\frac{d}{2} \tag{E.11}
\end{equation*}
$$

where $\left|\boldsymbol{\Sigma}_{p}\right|$ denotes the determinant of the matrix $\boldsymbol{\Sigma}_{p}$.

E. 3 The Multinomial Distribution

If a random variable x can take one of one m discrete values $x_{1}, x_{2}, . . x_{m}$ and

$$
\begin{equation*}
p\left(x=x_{s}\right)=\pi_{s} \tag{E.12}
\end{equation*}
$$

then x is said to have a multinomial distribution.

E. 4 The Dirichlet Distribution

If $\boldsymbol{\pi}=\left[\pi_{1}, \pi_{2}, \ldots \pi_{m}\right]$ are the parameters of a multinomial distribution then

$$
\begin{equation*}
q(\boldsymbol{\pi})=\Gamma\left(\lambda_{t o t}\right) \prod_{s=1}^{m} \frac{\pi_{s}^{\lambda_{s}-1}}{\Gamma\left(\lambda_{s}\right)} \tag{E.13}
\end{equation*}
$$

defines a Dirichlet distribution over these parameters where

$$
\begin{equation*}
\lambda_{t o t}=\sum_{s} \lambda_{s} \tag{E.14}
\end{equation*}
$$

The mean value of π_{s} is $\lambda_{s} / \lambda_{t o t}$.

E.4.1 Relative Entropy

For Dirichlet densities $q(\boldsymbol{\pi})=D\left(\boldsymbol{\pi} ; \boldsymbol{\lambda}_{q}\right)$ and $p(\boldsymbol{\pi})=D\left(\boldsymbol{\pi} ; \boldsymbol{\lambda}_{p}\right)$ where the number of states is m and $\boldsymbol{\lambda}_{q}=\left[\lambda_{q}(1), \lambda_{q}(2), . ., \lambda_{q}(m)\right]$ and $\boldsymbol{\lambda}_{p}=\left[\lambda_{p}(1), \lambda_{p}(2), . ., \lambda_{p}(m)\right]$. the KL-divergence is

$$
\begin{aligned}
D[q \| p] & =\Gamma\left(\log \lambda_{q t o t}\right)+\sum_{s=1}^{m}\left(\lambda_{q}(s)-1\right)\left(\Psi\left(\lambda_{q}(s)\right)-\Psi\left(\lambda_{q t o t}\right)-\log \Gamma\left(\lambda_{q}(s)(\mathrm{E} .15)\right.\right. \\
& -\Gamma\left(\log \lambda_{p t o t}\right)+\sum_{s=1}^{m}\left(\lambda_{p}(s)-1\right)\left(\Psi\left(\lambda_{q}(s)\right)-\Psi\left(\lambda_{q t o t}\right)-\log \Gamma\left(\lambda_{p}(s)\right)\right.
\end{aligned}
$$

where

$$
\begin{align*}
& \lambda_{q t o t}=\sum_{s=1}^{m} \lambda_{q}(s) \tag{E.16}\\
& \lambda_{p t o t}=\sum_{s=1}^{m} \lambda_{p}(s)
\end{align*}
$$

and $\Psi()$ is the digamma function.

[^0]: ${ }^{1}$ For non zero mean we simply replace a with $a-\mu$ where μ is the mean.

