
Chapter 7
Multiple Time Series
7.1 IntroductionWe now consider the situation where we have a number of time series and wish toexplore the relations between them. We �rst look at the relation between cross-correlation and multivariate autoregressive models and then at the cross-spectraldensity and coherence.7.2 Cross-correlationGiven two time series xt and yt we can delay xt by T samples and then calculate thecross-covariance between the pair of signals. That is�xy(T ) = 1N � 1 NXt=1(xt�T � �x)(yt � �y) (7.1)where �x and �y are the means of each time series and there are N samples ineach. The function �xy(T ) is the cross-covariance function. The cross-correlation isa normalised version rxy(T ) = �xy(T )q�xx(0)�yy(0) (7.2)where we note that �xx(0) = �2x and �yy(0) = �2y are the variances of each signal.Note that rxy(0) = �xy�x�y (7.3)which is the correlation between the two variables. Therefore unlike the autocorre-lation, rxy is not, generally, equal to 1. Figure 7.1 shows two time series and theircross-correlation. 87



88 Signal Processing Course, W.D. Penny, April 2000.7.2.1 Cross-correlation is asymmetricFirst, we re-cap as to why the auto-correlation is a symmetric function. The autoco-variance, for a zero mean signal, is given by�xx(T ) = 1N � 1 NXt=1 xt�Txt (7.4)This can be written in the shorthand notation�xx(T ) =< xt�Txt > (7.5)where the angled brackets denote the average value or expectation. Now, for negativelags �xx(�T ) =< xt+Txt > (7.6)Subtracting T from the time index (this will make no di�erence to the expectation)gives �xx(�T ) =< xtxt�T > (7.7)which is identical to �xx(T ), as the ordering of variables makes no di�erence to theexpected value. Hence, the autocorrelation is a symmetric function.The cross-correlation is a normalised cross-covariance which, assuming zero meansignals, is given by �xy(T ) =< xt�T yt > (7.8)and for negative lags �xy(�T ) =< xt+T yt > (7.9)Subtracting T from the time index now gives�xy(�T ) =< xtyt�T > (7.10)which is di�erent to �xy(T ). To see this more clearly we can subtract T once morefrom the time index to give �xy(�T ) =< xt�T yt�2T > (7.11)Hence, the cross-covariance, and therefore the cross-correlation, is an asymmetricfunction.To summarise: moving signal A right (forward in time) and multiplying with signalB is not the same as moving signal A left and multiplying with signal B; unless signalA equals signal B.7.2.2 WindowingWhen calculating cross-correlations there are fewer data points at larger lags thanat shorter lags. The resulting estimates are commensurately less accurate. To takeaccount of this the estimates at long lags can be smoothed using various windowoperators. See lecture 5.
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Figure 7.1: Signals xt (top) and yt (bottom).
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Figure 7.2: Cross-correlation function rxy(T ) for the data in Figure 7.1. A lag ofT denotes the top series, x, lagging the bottom series, y. Notice the big positivecorrelation at a lag of 25. Can you see from Figure 7.1 why this should occur ?



90 Signal Processing Course, W.D. Penny, April 2000.7.2.3 Time-Delay EstimationIf we suspect that one signal is a, possibly noisy, time-delayed version of another signalthen the peak in the cross-correlation will identify the delay. For example, �gure 7.1suggests that the top signal lags the bottom by a delay of 25 samples. Given that thesample rate is 125Hz this corresponds to a delay of 0.2 seconds.7.3 Multivariate Autoregressive modelsA multivariate autoregressive (MAR) model is a linear predictor used for modellingmultiple time series. An MAR(p) model predicts the next vector value in a d-dimensional time series, xt (a row vector) as a linear combination of the p previousvector values of the time seriesx(t) = pXk=1x(t� k)a(k) + et (7.12)where each ak is a d � by � d matrix of AR coe�cients and et is an IID Gaussiannoise vector with zero mean and covariance C. There are a total of np = p � d� dAR coe�cients and the noise covariance matrix has d � d elements. If we write thelagged vectors as a single augmented row vector~x(t) = [x(t� 1);x(t� 2); :::;x(t� p)] (7.13)and the AR coe�cients as a single augmented matrixA = [a(1);a(2); :::;a(p)]T (7.14)then we can write the MAR model asx(t) = ~x(t)A+ e(t) (7.15)The above equation shows the model at a single time point t.The equation for the model over all time steps can be written in terms of the embed-ding matrix, ~M , whose tth row is ~x(t), the error matrix E having rows e(t+ p+ 1)and the target matrix X having rows x(t+ p+ 1). This givesX = ~MA+E (7.16)which is now in the standard form of a multivariate linear regression problem. TheAR coe�cients can therefore be calculated fromÂ = � ~MT ~M��1 ~MTX (7.17)and the AR predictions are then given byx̂(t) = ~x(t)Â (7.18)



Signal Processing Course, W.D. Penny, April 2000. 91The predicion errors are e(t) = x(t)� x̂(t) (7.19)and the noise covariance matrix is estimated asC = 1N � npeT (t)e(t) (7.20)The denominator N � np arises because np degrees of freedom have been used up tocalculate the AR coe�cients (and we want the estimates of covariance to be unbiased).7.3.1 Model order selectionGiven that an MAR model can be expressed as a multivariate linear regression prob-lem all the usual model order selection criteria can be employed such as stepwiseforwards and backwards selection. Other criteria also exist. Neumaier and Schneider[42] and Lutkepohl [34] investigate a number of methods including the Final Predic-tion Error FPE(p) = log�2 + log N + npN � np (7.21)where �2 = 1N [det((N � np)C)]1=d (7.22)but they prefer the Minimum Description Length (MDL) criterion1MDL(p) = N2 log�2 + np2 logN (7.23)7.3.2 ExampleGiven two time series and a MAR(3) model, for example, the MAR predictions arex̂(t) = ~x(t)A (7.24)x̂(t) = [x(t� 1);x(t� 2);x(t� 3)] 264 a(1)a(2)a(3) 375h x̂1(t) x̂2(t) i = h x1(t� 1)x2(t� 1)x1(t� 2)x2(t� 2)x1(t� 3)x2(t� 3) i (7.25)2666666664 â11(1) â12(1)â21(1) â22(1)â11(2) â12(2)â21(2) â22(2)â11(3) â12(3)â21(3) â22(3)
37777777751The MDL criterion is identical to the negative value of the Bayesian Information Criterion (BIC)ie. MDL(p) = �BIC(p), and Neumaier and Schneider refer to this measure as BIC.
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tFigure 7.3: Signals x1(t) (top) and x2(t) (bottom) and predictions from MAR(3)model.Applying an MAR(3) model to our data set gave the following estimates for the ARcoe�cients, ap, and noise covariance C, which were estimated from equations 7.17and 7.20 a1 = " �1:2813 �0:2394�0:0018 �1:0816 #a2 = " 0:7453 0:2822�0:0974 0:6044 #a3 = " �0:3259 �0:0576�0:0764 �0:2699 #C = " 0:0714 0:00540:0054 0:0798 #7.4 Cross Spectral DensityJust as the Power Spectral Density (PSD) is the Fourier transform of the auto-covariance function we may de�ne the Cross Spectral Density (CSD) as the Fouriertransform of the cross-covariance functionP12(w) = 1Xn=�1�x1x2(n) exp(�iwn) (7.26)



Signal Processing Course, W.D. Penny, April 2000. 93Note that if x1 = x2, the CSD reduces to the PSD. Now, the cross-covariance of asignal is given by �x1x2(n) = 1Xl=�1x1(l)x2(l � n) (7.27)Substituting this into the earlier expression givesP12(w) = 1Xn=�1 1Xl=�1x1(l)x2(l � n) exp(�iwn) (7.28)By noting that exp(�iwn) = exp(�iwl) exp(iwk) (7.29)where k = l � n we can see that the CSD splits into the product of two integralsP12(w) = X1(w)X2(�w) (7.30)where X1(w) = 1Xl=�1x1(l) exp(�iwl) (7.31)X2(�w) = 1Xk=�1x2(k) exp(+iwk)For real signals X�2 (w) = X2(�w) where * denotes the complex conjugate. Hence,the cross spectral density is given byP12(w) = X1(w)X�2 (w) (7.32)This means that the CSD can be evaluated in one of two ways (i) by �rst estimatingthe cross-covariance and Fourier transforming or (ii) by taking the Fourier transformsof each signal and multiplying (after taking the conjugate of one of them). A numberof algorithms exist which enhance the spectral estimation ability of each method.These algorithms are basically extensions of the algorithms for PSD estimation, forexample, for type (i) methods we can perform Blackman-Tukey windowing of thecross-covariance function and for type (ii) methods we can employ Welch's algorithmfor averaging modi�ed periodograms before multiplying the transforms. See Carter[8] for more details.The CSD is complexThe CSD is complex because the cross-covariance is asymmetric (the PSD is realbecause the auto-covariance is symmetric; in this special case the Fourier transormreduces to a cosine transform).



94 Signal Processing Course, W.D. Penny, April 2000.7.4.1 More than two time seriesThe frequency domain characteristics of a multivariate time-series may be summarisedby the power spectral density matrix (Marple, 1987[39]; page 387). For d time seriesP (f) = 0BBB@ P11(f) P12(f) � � � P1d(f)P12(f) P22(f) � � � P2d(f). . . . . . . . . . . . . . . . . . . . . . . . . . .P1d(f) P2d(f) � � � Pdd(f) 1CCCA (7.33)where the diagonal elements contain the spectra of individual channels and the o�-diagonal elements contain the cross-spectra. The matrix is called a Hermitian matrixbecause the elements are complex numbers.7.4.2 Coherence and PhaseThe complex coherence function is given by (Marple 1987; p. 390)rij(f) = Pij(f)qPii(f)qPjj(f) (7.34)The coherence, or mean squared coherence (MSC), between two channels is given byrij(f) =j rij(f) j2 (7.35)The phase spectrum, between two channels is given by�ij(f) = tan�1 "Im(rij(f))Re(rij(f)) # (7.36)The MSC measures the linear correlation between two time series at each frequencyand is directly analagous to the squared correlation coe�cient in linear regression.As such the MSC is intimately related to linear �ltering, where one signal is viewedas a �ltered version of the other. This can be interpreted as a linear regression ateach frequency. The optimal regression coe�cient, or linear �lter, is given byH(f) = Pxy(f)Pxx(f) (7.37)This is analagous to the expression for the regression coe�cient a = �xy=�xx (see �rstlecture). The MSC is related to the optimal �lter as followsr2xy(f) = jH(f)j2Pxx(f)Pyy(f) (7.38)which is analagous to the equivalent expression in linear regression r2 = a2(�xx=�yy).



Signal Processing Course, W.D. Penny, April 2000. 95At a given frequency, if the phase of one signal is �xed relative to the other, then thesignals can have a high coherence at that frequency. This holds even if one signal isentirely out of phase with the other (note that this is di�erent from adding up signalswhich are out of phase; the signals cancel out. We are talking about the coherencebetween the signals).At a given frequency, if the phase of one signal changes relative to the other thenthe signals will not be coherent at that frequency. The time over which the phaserelationship is constant is known as the coherence time. See [46], for an example.7.4.3 Welch's method for estimating coherenceAlgorithms based on Welch's method (such as the cohere function in the matlabsystem identi�cation toolbox) are widely used [8] [55]. The signal is split up into anumber of segments, N , each of length T and the segments may be overlapping. Thecomplex coherence estimate is then given asr̂ij(f) = PNn=1Xni (f)(Xnj (f))�qPNn=1Xni (f)2qPNn=1Xnj (f)2 (7.39)where n sums over the data segments. This equation is exactly the same form as forestimating correlation coe�cients (see chapter 1). Note that if we have only N = 1data segment then the estimate of coherence will be 1 regardless of what the truevalue is (this would be like regression with a single data point). Therefore, we needa number of segments.Note that this only applies to Welch-type algorithms which compute the CSD from aproduct of Fourier transforms. We can trade-o� good spectral resolution (requiringlarge T ) with low-variance estimates of coherence (requiring large N and thereforesmall T ). To an extent, by increasing the overlap between segments (and thereforethe amount of computation, ie. number of FFTs computed) we can have the best ofboth worlds.7.4.4 MAR modelsJust as the PSD can be calculated from AR coe�cients so the PSD's and CSD's canbe calculated from MAR coe�cients. First we computeA(f) = I + pXk ak exp(�ik2�fT ) (7.40)where I is the identity matrix, f is the frequency of interest and T is the samplingperiod. A(f) will be complex. This is analagous to the denominator in the equivalentAR expression (1 + Ppk=1 ak exp(�ik2�ft)). Then we calculate the PSD matrix asfollows (Marple 1987 [39]; page 408)PMAR(f) = T [A(f)]�1C [A(f)]�H (7.41)
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Figure 7.4: Coherence estimates from (a) Welch's periodogram method and (b) Mul-tivariate Autoregressive model.where C is the residual covariance matrix and H denotes the Hermitian transpose.This is formed by taking the complex conjugate of each matrix element and thenapplying the usual transpose operator.Just as A�T denotes the transpose of the inverse so A�H denotes the Hermitiantranspose of the inverse. Once the PSD matrix has been calculated, we can calculatethe coherences of interest using equation 7.35.
7.5 ExampleTo illustrate the estimation of coherence we generated two signals. The �rst, x, beinga 10Hz sine wave with additive Gaussian noise of standard deviation 0:3 and thesecond y being equal to the �rst but with more additive noise of the same standarddeviation. Five seconds of data were generated at a sample rate of 128Hz. Wethen calculated the coherence using (a) Welch's modi�ed periodogram method withN = 128 samples per segment and a 50% overlap between segments and smoothingvia a Hanning window and (b) an MAR(8) model. Ideally, we should see a coherencenear to 1 at 10Hz and zero elsewhere. However, the coherence is highly non-zero atother frequencies. This is because due to the noise component of the signal thereis power (and some cross-power) at all frequencies. As coherence is a ratio of cross-power to power it will have a high variance unless the number of data samples islarge.You should therefore be careful when interpreting coherence values. Preferably youshould perform a signi�cance test, either based on an assumption of Gaussian signals[8] or using a Monte-Carlo method [38]. See also the text by Bloom�eld [4].



Signal Processing Course, W.D. Penny, April 2000. 977.6 Partial CoherenceThere is a direct analogy to partial correlation. Given a target signal y and othersignals x1; x2; :::; xm we can calculate the `error' at a given frequency after includingk = 1::m variables Em(f). The partial coherence iskm(f) = Em�1(f)� Em(f)Em�1(f) (7.42)See Carter [8] for more details.


