Chapter 5

Fourier methods

5.1 Introduction

Of the many books on Fourier methods those by Chatfield [11], Proakis and Manolakis
[51] and Bloomfield [4] are particularly good.

5.2 Sinewaves and Samples

Sines and cosines can be understood in terms of the vertical and horizontal displace-
ment of a fixed point on a rotating wheel; the wheel has unit length and rotates
anti-clockwise. The angle round the wheel is measured in degrees or radians (0 — 27;
for unit radius circles the circumference is 27, radians tell us how much of the circum-
ference we’ve got). If we go round the wheel a whole number of times we end up in
the same place, eg.cos 4w = cos 2w = cos 0 = 1. Frequency, f, is the number of times
round the wheel per second. Therefore, given x = cos(2rft), z =1L at t = 1/f,2/f
etc. For x = cos(2nft + ®) we get a head start (lead) of ® radians. Negative
frequencies may be viewed as a wheel rotating clockwise instead of anti-clockwise.

If we assume we have samples of the signal every 7 seconds and in total we have
N such samples then Ty is known as the sampling period and Fy; = 1/Ty is the
sampling frequency in Hertz (Hz) (samples per second). The nth sample occurs at
time t[n] = nTs, = n/F. The cosine of sampled data can be written

x[n] = cos(2m ft[n]) (5.1)

When dealing with sampled signals it is important to note that some frequencies
become indistinguishable from others; at a sampling frequency Fy the only unique
frequencies are in the range 0 to (F;/2)Hz. Any frequencies outside this range become
aliases of one of the unique frequencies.

For example, if we sample at 8Hz then a -6Hz signal becomes indistinguishable from
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Figure 5.1: Aliases The figure shows a 2Hz cosine wave and o -6Hz cosine wave
as solid curves. At sampling times given by the dotted lines, which correspond to a
sampling frequency of 8Hz, the —6Hz signal is an alias of the 2Hz signal. Other
aliases are given by equation 5.2.

a 2Hz signal. This is shown in figure 5.1. More generally, if f, is a unique frequency
then its aliases have frequencies given by

f=fo+kF; (5.2)

where k is any positive or negative integer, eg. for fo = 2 and F; = 8 the two lowest
frequency aliases, given by £ = —1 and £ =1, are —6Hz and 10Hz.

Because of aliasing we must be careful when we interpret the results of spectral
analysis. This is discussed more at the end of the lecture.

5.3 Sinusoidal models

If our time series has a periodic component in it we might think about modelling it

with the equation
z[n] = Ry + Rcos(2w ft[n] + @) + e[n] (5.3)

where Ry is the offset (eg. mean value of x[n]), R is the amplitude of the sine wave, f
is the frequency and @ is the phase. What our model does’nt explain will be soaked
up in the error term e[n]. Because of the trig identity

cos(A + B) = cos Acos B — sin Asin B (5.4)
the model can be written in an alternative form

z[n] = Ry + acos(2m ft[n]) + bsin(2w ft[n]) + e[n] (5.5)



where @ = Rcos(®) and b = —Rsin(®). This is the form we consider for subsequent
analysis.

This type of model is similar to a class of models in statistics called Generalised Linear
Models (GLIMS). They perform nonlinear regression by, first, taking fized nonlinear
functions of the inputs, these functions being called basis functions, and second, form
an output by taking a linear combination of the basis function outputs. In sinusoidal
models the basis functions are sines and cosines. In statistics a much broader class
of functions is considered. However, sinewaves have some nice properties as we shall
see.

5.3.1 Fitting the model

If we let & = [z(1),2(2),...,2(N)]T, w = [Ry,a,b]", € = [e1, ea, ..., en]T and

1 cos2mft[l] sin2nft[1]
1 cos2mft[2] sin2m ft]2]
A = |1 cos2rft[3] sin2nmft[3] (5.6)

1 cos2nft|N] sin2m ft[N]
then the model can be written in the matrix form
r=Aw+e (5.7)

which is in the standard form of a multivariate linear regression problem. The solution
is therefore

w=(ATA) ATz (5.8)

5.3.2 But sinewaves are orthogonal

Because we are dealing with sinewaves it turns out that the above solution simpli-
fies. We restrict ourselves to a frequency f, which is an integer multiple of the base
frequency

fp - pr (59)
where p = 1..N/2 and
F

eg. for F;, =100 and N = 100 (1 seconds worth of data), f, = 1Hz and we can have
fp from 1Hz up to 50Hz*. The orthogonality of sinewaves is expressed in the following
equations

i\f: cos 27 fit[n] = g: sin 27 fyt[n] = 0 (5.11)
n=1 n=1

1To keep things simple we don’t allow f, where p = N/2; if we did allow it we’d get N and 0 in
equations 5.14 and 5.15 for the case k = [. Also we must have N even.
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Figure 5.2: Orthogonality of sinewaves Figure (a) shows cos2n3fyt[n| and
cos 2md fyt[n|, cosines which are 3 and 4 times the base frequency f, = 1Hz. For
any two integer multiples k,1 we get S0 cos2n fyt[n]cos2n fit[n] = 0. This can be
seen from Figure (b) which shows the product cos2m3 fyt[n|cos2md fyt[n]. Because of
the trig identity cosAcosB = 0.5cos(A + B) + 0.5cos(A — B) this looks like a 7THz
signal superimposed on a 1Hz signal. The sum of this signal over a whole number of
cycles can be seen to be zero; because each cos term sums to zero. If, however, k orl
are not integers the product does not sum to zero and the orthogonality breaks down.

g: cos 27 fyt[n] sin 27 fit[n] = 0 (5.12)
n=1
g: cos 27 fyt[n] sin 27 fit[n] = 0 (5.13)
n=1
3 27 [t 2m fit 0 kol 5.14
;cos 7 frt[n] cos 27 fit[n] N2 k=l (5.14)
> 2w frt|n| sin 27 fit 0 kil 5.15
;sm 7 fet[n] sin 27 fit[n] N2 k=l (5.15)

These results can be proved by various trig. identities or, more simply, by converting
to complex exponentials (see [5] or later in this chapter). The results depend on the
fact that all frequencies that appear in the above sums are integer multiples of the
base frequency; see figure 5.2.

This property of sinewaves leads to the result
ATA=D (5.16)

where D is a diagonal matrix. The first entry is N (from the inner product of two
columns of 1’s of length N; the 1’s are the coefficients of the constant term Rj) and
all the other entries are N/2. A matrix Q for which

Q'Q=D (5.17)

is said to be orthogonal. Therefore our A matrix is orthogonal. This greatly simplifies
the fitting of the model which now reduces to

w=D"'AT¢ (5.18)
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Figure 5.3: Sunspot indez (solid line) and prediction of it from a simple sinusoidal
model (dotted line).

which is simply a projection of the signal onto the basis matrix, with some pre-factor
(D™'; remember the inverse of a diagonal matrix is simply the inverse of each of
the diagonal terms, so this is easy to compute). Given that w = [a, b, Ry]" we can
see that, for example, a is computed by simply projecting the data onto the second
column of the matrix A, eg.

9 N
a=— Y cos(2mft)x, (5.19)
N n=1
Similarly,
2 N
b= = sin(2rft)z, (5.20)
N n=1
1 N
Ry = N;xt (5.21)

We applied the simple sinusoidal model to a ‘sunspot data set’ as follows. We chose
60 samples between the years 1731 and 1790 (because there was a fairly steady mean
level in this period). The sampling rate Fy = 1Year. This gives a base frequency of
fo = 1/60. We chose our frequency f = pf;, with p=6; giving a complete cycle once
every ten years. This gave rise to the following estimates; Ry = 53.64, a = 39.69 and
b = —2.36. The data and predictions are shown in Figure 5.3.



5.4 Fourier Series

We might consider that our signal consists of lots of periodic components in which
case the multiple sinusoidal model would be more appropriate

P
z(t) = Ry + Z Ry cos(27 frt + @) + €4 (5.22)
k—1

where there are p sinusoids with different frequencies and phases. In a discrete Fourier
series there are p = N/2 such sinusoids having frequencies
_ kF;
N

where k = 1..N/2 and Fj is the sampling frequency. Thus the frequencies range from
F/N up to F,/2. The Fourier series expansion of the signal x(¢) is

Je (5.23)

N/2

z(t) = Ro + > Ry cos(2m fit + Dp) (5.24)

k=1

Notice that there is no noise term. Because of the trig identity

cos(A + B) = cos Acos B — sin Asin B (5.25)
this can be written in the form
N/2
z(t) = ag + Y aj cos(2m fit) + by sin(2m fit) (5.26)
k=1

where ay = Ry cos(®;) and by = — Ry sin(®y). Alternatively, we have R? = af + b;
and ® = tan !(bg/ax). The signal at frequency f; is known as the kth harmonic.
Equivalently, we can write the nth sample as

N/2
z[n] = ag + Z ay cos(2m frt[n]) + by sin(27 fit[n]) (5.27)

where t[n] = nT5.

The important things to note about the sinusoids in a Fourier series are (i) the
frequencies are equally spread out, (ii) there are N/2 of them where N is the number
of samples, (iii) Given F; and N the frequencies are fized. Also, note that in the
Fourier series ‘model’ there is no noise. The Fourier series aims to represent the data
perfectly (which it can do due to the excessive number of basis functions)?.

The Fourier coefficients can be computed by a generalisation of the process used to
compute the coefficients in the simple sinusoidal model.

9 N
U = 5 ;COS(QWfkt[n])x[n] (5.28)

2Statisticians would frown on fitting a model with N coefficients to N data points as the estimates
will be very noisy; the Fourier series is a low bias (actually zero), high variance model. This underlines
the fact that the Fourier methods are transforms rather than statistical models.



Similarly,

2 X
b = ¥ T;sm@ﬂfkt[n])x[n] (5.29)
_ ! 3 5.30
ag = N;x[n] (5.30)

These equations can be derived as follows. To find, for example, a;, multiply both
sides of equation 5.27 by cos(27 fxt[n]) and sum over n. Due to the orthogonality
property of sinusoids (which still holds as all frequencies are integer multiples of a
base frequency) all terms on the right go to zero except for the one involving a;. This
just leaves ai(N/2) on the right giving rise to the above formula.

5.4.1 Example

The plots on the right of Figure 5.4 show four components in a Fourier series expan-
sion. The components have been ordered by amplitude. The plots on the left of the
Figure show the corresponding Fourier approximation.

5.5 Fourier Transforms

Fourier series are representations of a signal by combinations of sinewaves of different
magnitudes, frequencies and offsets (or phases). The magnitudes are given by the
Fourier coefficients. These sinewaves can also be represented in terms of complex
exponentials (see the appendix for a quick review of complex numbers); a representa-
tion which ultimately leads to algorithms for computing the Fourier coefficients; the
Discrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT).

5.5.1 Discrete Fourier Transform

Fourier series can be expressed in terms of complex exponentials. This representation
leads to an efficient method for computing the coefficients. We can write the cosine
terms as complex exponentials

exp(i27 frt[n]) + exp(—i27 fit[n])
2

ay cos(2m frt[n]) = ay (5.31)

where 2 = —1. Picture this as the addition of two vectors; one above the real axis
and one below. Together they make a vector on the real axis which is then halved.

We can also write the sine terms as

exp(i27 ft[n]) — ?XP(—i2Wfkt[”])

by, sin(27 fyt[n]) = by 2i

(5.32)



Figure 5.4: Signal (solid line) and components of the Fourier series approzimation
S b1 Rrcos(2m fi + @) (dotted lines) with (a) p=1, (b)p=2, (¢)p=3 and (d) p =
11 where we have ordered the components according to amplitude. The corresponding
individual terms are (e) R* = 0.205,f = 3.75 and ® = 0.437, (f) R> =0.151, f = 2.5
and ® = 0.743, (g) R* = 0.069, f = 11.25 and ® = 0.751 and (h) R* = 0.016,
f =175 and & = —0.350.



Picture this as one vector above the real axis minus another vector below the real
axis. This results in a purely imaginary (and positive) vector. The result is halved
and then multiplied by the vector exp(37/2) (—i, from multplying top and bottom
by ) which provides a rotation to the real axis.

Adding them (and moving i to the numerator by multiplying by top and bottom by
i) gives

1 . . 1 . .

i(ak — byi) exp(i2m fxt[n]) + E(ak + byi) exp(—i2m frt[n]) (5.33)

Note that a single term at frequency k has split into a complex combination (the co-
efficients are complex numbers) of a positive frequency term and a negative frequency
term. Substituting the above result into equation 5.27 and noting that fyt[n] = kn/N
we get

1 N/2 1 N/2
z[n] = ag + 3 > (ay — byt) exp(i2mkn/N) + 3 > (ay + byi) exp(—i2xkn/N) (5.34)
k=1 k=1

If we now let

(k) = g(ak ~ byd) (5.35)

and note that for real signals X (—k) = X*(k) (negative frequencies are reflections
across the real plane, ie. conjugates) then the (aj, + byi) terms are equivalent to
X (—Fk). Hence

N/2 N/2

z[n] = ag + — Z X (k) exp(i2mkn/N) + Z X (k) exp(—i27kn/N)  (5.36)

Now, because X (N — k) = X(—k) (this can be shown by considering the Fourier
transform of a signal x[n] and using the decomposition exp(—i2n(N — k)n/N) =
exp(—i2rN/N) exp(i2wkn/N) where the first term on the right is unity) we can write
the second summation as

N/2 N-1
1 -
x[n] = agy —|— — Z X (k) exp(i27kn/N) + > X(k)exp(—i2n(N — k)n/N)
2N k=N/2
(5.37)
Using the same exponential decomposition allows us to write
1 N-1 B
z[n] = ag + N > X(k)exp(i2rkn/N) (5.38)
k=1

If we now let X(k 4+ 1) = X (k) then we can absorb the constant aq into the sum
giving
Z X (k) exp(i2n(k — 1)n/N) (5.39)

which is known as the Inverse Discrete Fourier Transform (IDFT). The terms X (k)
are the complexr valued Fourier coefficients. We have the relations

ay = Re{X(1)} (5.40)



ap = %Re{X(k+1)}

—2
b = —Im{X(k+1)}

The complex valued Fourier coefficients can be computed by first noting the orthog-
onality relations

N k=1,£N+1),£(N+2)

N
T;exp(ZZW(k—l)n/N) = 0 otherwise (5.41)

If we now multiply equation 5.39 by exp(—i2min/N), sum from 1 to N and re-arrange

we get
N

X (k) =" z(n)exp(—i2n(k — 1)n/N) (5.42)

n=1

which is the Discrete Fourier Transform (DFT).

5.5.2 The Fourier Matrix

If we write X (k) as a vector X = [X (1), X(2),..., X(N)]* and the input signal as
a vector & = [2(0),2(1),...,z(N — 1)]* then the above equations can be written in
matrix form as follows. The Inverse Discrete Fourier Transform is

r=FX (5.43)
where F' is the Fourier Matriz and the Discrete Fourier Transform is
X=F'z (5.44)

If we let
wy = exp(i27/N) (5.45)

we can write the Fourier matriz as

1 1 1 1
1 wy wi; w](VN_l)
Fy =+ |1 vw% wh C w2 (5.46)
N-1 2(N-1 N—1)2
L
which has elements®
(F ) = wlD0b (5.47)

3We have re-indexed such that we now have z(0) to (N — 1). Hence we have (n — 1) instead of
n.



Now, the inverse Fourier matrix is

11 1 1 W
1wyt wy? . w;,(N_l)
Fybo= |1 wy? wy! Cwy Y (5.48)
i 1 w;f(N—l) ;fZ(N—l) z:f(N_m ]
where the elements are
(F 3 i = wy Y (5.49)

In the Fast Fourier Transform (FFT) an N-dimensional matrix multiplication can be
replaced by 2 M-dimensional multiplications, where M = N/2. This is because the
exponential elements in the Fourier matrix have the key property

w? = wa (5.50)

eg. exp(i2m/64)? = exp(i27/32). Cooley and Tukey realised you could use this
property as follows. If you split the IDFT

N-1
x;= > whX; (5.51)
k=0
into a summation of even parts and a summation of odd parts
= ok " k)
Tj = Z w]{ X2k; + Z W ]X2k+1 (552)

then we can use the identity w3 = wy; to give

B M—-1 i i M-1 ki
Tj = Z ’U)Mng + wy Z ’U)Mng+1 (553)
k=0 k=0

which is the summation of two IDFTs of dimension M (a similar argument applies
for the DFT).

This reduces the amount of computation by, approximately, a factor of 2. We can then
replace each M-dimensional multiplication by an M /2-dimensional one, etc. FFTs
require IV to be a power of 2, because at the lowest level we have lots of 2-dimensional
operations. For N = 4096 we get an overall speed-up by a factor of 680. For larger
N the speed-ups are even greater; we are replacing N? multiplications by % log, N.

5.6 Time-Frequency relations

Signals can be operated on in the time domain or in the frequency domain. We now
explore the relations between them.



5.6.1 Power Spectral Density

The power in a signal is given by

Po=3 felnlf? (5.54)

We now derive an expression for P, in terms of the Fourier coefficients. If we note
that |z[n]| can also be written in its conjugate form (the conjugate form has the same
magnitude; the phase is different but this does'nt matter as we’re only interested in
magnitude)

lz[n]| = Z X*(k)exp(—i2n(k — 1)n/N) (5.55)
then we can write the power as

P, = i\f: |z[n] Z X*(k)exp(—i2n(k — 1)n/N)| (5.56)

If we now change the order of the summations we get

:._.§:|;( §: n) exp(—i2r(k — 1)n/N)| (5.57)

n=1

where the sum on the right is now equivalent to X (k). Hence

1 X )
Pe =5 kg | X (k)] (5.58)

We therefore have an equivalence between the power in the time domain and the
power in the frequency domain which is known as Parseval’s relation. The quantity

Py(k) = [X(k)|* (5.59)

is known as the Power Spectral Density (PSD).

5.6.2 Filtering

The filtering process

zln] = > z1(Dza(n—1) (5.60)
[=—00
is also known as convolution
z[n] = x1(n) * x2(n) (5.61)

We will now see how it is related to frequency domain operations. If we let w =
2m(k —1)/N, multiply both sides of the above equation by exp(—iwn) and sum over
n the left hand side becomes the Fourier transform

o0

X(w)= Y z[n]exp(—iwn) (5.62)

n—=-—oo



and the right hand side (RHS) is

i i 1 (l)wo(n — 1) exp(—iwn) (5.63)

n=—oo [=—o0

Now, we can re-write the exponential term as follows
exp(—iwn) = exp(—iw(n — 1)) exp(—iwl) (5.64)

Letting n' = n — [, we can write the RHS as

o0 o0

> () exp(—iwl) > wa(n') exp(—iwn') = Xi(w)Xa(w) (5.65)

l=—00 n'=—oo

Hence, the filtering operation is equivalent to
X(w) = Xy (w) X2 (w) (5.66)

which means that convolution in the time domain is equivalent to multiplication in
the frequency domain. This is known as the convolution theorem.

5.6.3 Autocovariance and Power Spectral Density

The autocovariance of a signal is given by

o0

owe(n) = Y z(Dz(l—n) (5.67)

l[=—00

Using the same method that we used to prove the convolution theorem, but noting
that the term on the right is (I — n) not z(n — [) we can show that the RHS is
equivalent to

X (w) X (—w) = | X (w)* (5.68)

which is the Power Spectral Density, P,(w). Combining this with what we get for the
left hand side gives

o0

Py(w) = > 0g44(n)exp(—iwn) (5.69)

n=-—oo
which means that the PSD is the Fourier Transform of the autocovariance. This is
known as the Wiener-Khintchine Theorem. This is an important result. It means
that the PSD can be estimated from the autocovariance and vice-versa. It also means
that the PSD and the autocovariance contain the same information about the signal.

It is also worth noting that since both contain no information about the phase of a
signal then the signal cannot be uniquely constructed from either. To do this we need
to know the PSD and the Phase spectrum which is given by

(k) = tan—"(2%) (5.70)

Qy,



where b, and q, are the real Fourier coefficients.

We also note that the Fourier transform of a symmetric function is real. This is
because symmetric functions can be represented entirely by cosines, which are them-
selves symmetric; the sinewaves, which constitute the complex component of a Fourier
series, are no longer necessary. Therefore, because the autocovariance is symmetric
the PSD is real.

5.7 Spectral Estimation

5.7.1 The Periodogram

The periodogram of a signal z; is a plot of the normalised power in the kth harmonic
versus the frequency, fi of the kth harmonic. It is calculated as

N
I(fy) = E(ai +b7) (5.71)
where q; and b, are the Fourier coefficients.

The periodogram is a low bias (actually unbiased) but high variance * estimate of the
power at a given frequency. This is therefore a problem if the number of data points
is small; the estimated spectrum will be very spiky.

To overcome this, a number of algorithms exist to smooth the periodogram ie. to
reduce the variance. The Bartlett method, for example, takes an N-point sequence
and subdivides it into K nonoverlapping segments and calculates I(f;) for each. The
final periodogram is just the average over the K estimates. This results in a reduction
in variance by a factor K at the cost of reduced spectral resolution (by a factor K).

The Welch method is similar but averages modified periodograms, the modification
being a windowing of each segment of data. Also, the segments are allowed to overlap.
For further details of this and other smoothing methods see Chapter 12 in Proakis
and Manolakis [51]. This smoothing is necessary because at larger lags there are fewer
data points, so the estimates of covariance are commensurately more unreliable.

5.7.2 Autocovariance methods

The PSD can be calculated from the autocovariance. However, as the sample auto-
covariance on short segments of data has a high variance then so will the resulting
spectral estimates.

To overcome this a number of proposals have been made. The autocovariance func-
tion can first be smoothed and truncated by applying various smoothing windows,

4Tt is an inconsistent estimator, because the variance does’nt reduce to zero as the number of
samples tends to infinity.



for example Tukey, Parzen, Hanning or Hamming windows. For further details see
Chatfield p.114 [11] or Chapter 12 in Proakis and Manolakis [51].

5.7.3 Aliasing

Because of aliasing if we wish to uniquely identify frequencies up to BHz then we
must sample the data at a frequency f, > 2BHz.

Alternatively, given a particular sample rate fs, in order to uniquely identify frequen-
cies up to fs/2Hz (and not confuse them with higher frequencies) we must ensure that
there is no signal at frequencies higher than f,/2. This can be achieved by applying
a Low-Pass Filter (LPF).

5.7.4 Filtering

There are two main classes of filters; IIR filters and FIR filters. Their names derive
from how the filters respond to a single pulse of input, their so-called impulse response.
The output of an Infinite Impulse Response (IIR) filter is fed-back to its input. The
response to a single impulse is therefore a gradual decay which, though it may drop
rapidly towards zero (no output), will never technically reach zero; hence the name
IIR.

In Finite Impulse Response (FIR) filters the output is not fed-back to the input so
if there is no subsequent input there will be no output. The output of an FIR filter
([51], page 620) is given by

p—1
yln] = bex[n — k] (5.72)
k=0
where x[n] is the original signal and b, are the filter coefficients.

The simplest FIR filter is the (normalised) rectangular window which takes a moving
average of a signal. This smooths the signal and therefore acts a low-pass filter.
Longer windows cut down the range of frequencies that are passed.

Other examples of FIR filters are the Bartlett, Blackman, Hamming and Hanning
windows shown in Figure 5.5. The curvier shape of the windows means their frequency
characteristics are more sharply defined. See Chapter 8 in [51] for more details. FIR
filters are also known as Moving Average (MA) models which we will encounter in
the next lecture.

The output of an IIR filter is given by

y[n] = P]:Z_—: apyln — kJ +I:Z__: bpx[n — k] (5.73)

where the first term includes the feedback coefficients and the second term is an FIR
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window (dotted line). The Hamming window cuts of the higher frequencies more
sharply.



model. This type of filter is also known as a Autoregressive Moving Average (ARMA)
model (the first term being the Autoregressive (AR) part).

[IR filters can be designed by converting analog filters into the above IIR digital form.
See [51] (section 8.3) for details. Examples of resulting IIR implementations are the
Butterworth, Chebyshev, Elliptic and Bessel filters.



