
Chapter 5
Fourier methods
5.1 IntroductionOf the many books on Fourier methods those by Chat�eld [11], Proakis and Manolakis[51] and Bloom�eld [4] are particularly good.5.2 Sinewaves and SamplesSines and cosines can be understood in terms of the vertical and horizontal displace-ment of a �xed point on a rotating wheel; the wheel has unit length and rotatesanti-clockwise. The angle round the wheel is measured in degrees or radians (0� 2�;for unit radius circles the circumference is 2�, radians tell us how much of the circum-ference we've got). If we go round the wheel a whole number of times we end up inthe same place, eg.cos 4� = cos 2� = cos 0 = 1. Frequency, f , is the number of timesround the wheel per second. Therefore, given x = cos(2�ft), x = 1 at t = 1=f; 2=fetc. For x = cos(2�ft + �) we get a head start (lead) of � radians. Negativefrequencies may be viewed as a wheel rotating clockwise instead of anti-clockwise.If we assume we have samples of the signal every Ts seconds and in total we haveN such samples then Ts is known as the sampling period and Fs = 1=Ts is thesampling frequency in Hertz (Hz) (samples per second). The nth sample occurs attime t[n] = nTs = n=Fs. The cosine of sampled data can be writtenx[n] = cos(2�ft[n]) (5.1)When dealing with sampled signals it is important to note that some frequenciesbecome indistinguishable from others; at a sampling frequency Fs the only uniquefrequencies are in the range 0 to (Fs=2)Hz. Any frequencies outside this range becomealiases of one of the unique frequencies.For example, if we sample at 8Hz then a -6Hz signal becomes indistinguishable from59
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Figure 5.1: Aliases The �gure shows a 2Hz cosine wave and a -6Hz cosine waveas solid curves. At sampling times given by the dotted lines, which correspond to asampling frequency of 8Hz, the �6Hz signal is an alias of the 2Hz signal. Otheraliases are given by equation 5.2.a 2Hz signal. This is shown in �gure 5.1. More generally, if f0 is a unique frequencythen its aliases have frequencies given byf = f0 + kFs (5.2)where k is any positive or negative integer, eg. for f0 = 2 and Fs = 8 the two lowestfrequency aliases, given by k = �1 and k = 1, are �6Hz and 10Hz.Because of aliasing we must be careful when we interpret the results of spectralanalysis. This is discussed more at the end of the lecture.5.3 Sinusoidal modelsIf our time series has a periodic component in it we might think about modelling itwith the equation x[n] = R0 +Rcos(2�ft[n] + �) + e[n] (5.3)where R0 is the o�set (eg. mean value of x[n]), R is the amplitude of the sine wave, fis the frequency and � is the phase. What our model does'nt explain will be soakedup in the error term e[n]. Because of the trig identitycos(A+B) = cosA cosB � sinA sinB (5.4)the model can be written in an alternative formx[n] = R0 + a cos(2�ft[n]) + b sin(2�ft[n]) + e[n] (5.5)



Signal Processing Course, W.D. Penny, April 2000. 61where a = R cos(�) and b = �R sin(�). This is the form we consider for subsequentanalysis.This type of model is similar to a class of models in statistics called Generalised LinearModels (GLIMS). They perform nonlinear regression by, �rst, taking �xed nonlinearfunctions of the inputs, these functions being called basis functions, and second, forman output by taking a linear combination of the basis function outputs. In sinusoidalmodels the basis functions are sines and cosines. In statistics a much broader classof functions is considered. However, sinewaves have some nice properties as we shallsee.5.3.1 Fitting the modelIf we let x = [x(1); x(2); :::; x(N)]T , w = [R0; a; b]T , e = [e1; e2; :::; eN ]T andA = 26666664 1 cos2�ft[1] sin2�ft[1]1 cos2�ft[2] sin2�ft[2]1 cos2�ft[3] sin2�ft[3]:: :: ::1 cos2�ft[N ] sin2�ft[N ]
37777775 (5.6)then the model can be written in the matrix formx = Aw + e (5.7)which is in the standard form of a multivariate linear regression problem. The solutionis therefore w = (ATA)�1ATx (5.8)5.3.2 But sinewaves are orthogonalBecause we are dealing with sinewaves it turns out that the above solution simpli-�es. We restrict ourselves to a frequency fp which is an integer multiple of the basefrequency fp = pFb (5.9)where p = 1::N=2 and fb = FsN (5.10)eg. for Fs = 100 and N = 100 (1 seconds worth of data), fb = 1Hz and we can havefp from 1Hz up to 50Hz1. The orthogonality of sinewaves is expressed in the followingequations NXn=1 cos 2�fkt[n] = NXn=1 sin 2�fkt[n] = 0 (5.11)1To keep things simple we don't allow fp where p = N=2; if we did allow it we'd get N and 0 inequations 5.14 and 5.15 for the case k = l. Also we must have N even.
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Figure 5.2: Orthogonality of sinewaves Figure (a) shows cos 2�3fbt[n] andcos 2�4fbt[n], cosines which are 3 and 4 times the base frequency fb = 1Hz. Forany two integer multiples k; l we get PNn=1 cos2�fkt[n]cos2�flt[n] = 0. This can beseen from Figure (b) which shows the product cos2�3fbt[n]cos2�4fbt[n]: Because ofthe trig identity cosAcosB = 0:5cos(A + B) + 0:5cos(A � B) this looks like a 7Hzsignal superimposed on a 1Hz signal. The sum of this signal over a whole number ofcycles can be seen to be zero; because each cos term sums to zero. If, however, k or lare not integers the product does not sum to zero and the orthogonality breaks down.NXn=1 cos 2�fkt[n] sin 2�flt[n] = 0 (5.12)NXn=1 cos 2�fkt[n] sin 2�flt[n] = 0 (5.13)NXn=1 cos 2�fkt[n] cos 2�flt[n] = 0 k 6= lN=2 k = l (5.14)NXn=1 sin 2�fkt[n] sin 2�flt[n] = 0 k 6= lN=2 k = l (5.15)These results can be proved by various trig. identities or, more simply, by convertingto complex exponentials (see [5] or later in this chapter). The results depend on thefact that all frequencies that appear in the above sums are integer multiples of thebase frequency; see �gure 5.2.This property of sinewaves leads to the resultATA =D (5.16)where D is a diagonal matrix. The �rst entry is N (from the inner product of twocolumns of 1's of length N ; the 1's are the coe�cients of the constant term R0) andall the other entries are N=2. A matrix Q for whichQTQ =D (5.17)is said to be orthogonal. Therefore ourAmatrix is orthogonal. This greatly simpli�esthe �tting of the model which now reduces tow = D�1ATx (5.18)
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Figure 5.3: Sunspot index (solid line) and prediction of it from a simple sinusoidalmodel (dotted line).which is simply a projection of the signal onto the basis matrix, with some pre-factor(D�1; remember the inverse of a diagonal matrix is simply the inverse of each ofthe diagonal terms, so this is easy to compute). Given that w = [a; b; R0]T we cansee that, for example, a is computed by simply projecting the data onto the secondcolumn of the matrix A, eg. a = 2N NXn=1 cos(2�ft)xt (5.19)Similarly, b = 2N NXn=1 sin(2�ft)xt (5.20)
R0 = 1N NXn=1xt (5.21)We applied the simple sinusoidal model to a `sunspot data set' as follows. We chose60 samples between the years 1731 and 1790 (because there was a fairly steady meanlevel in this period). The sampling rate Fs = 1Year. This gives a base frequency offb = 1=60. We chose our frequency f = pfb with p=6; giving a complete cycle onceevery ten years. This gave rise to the following estimates; R0 = 53:64, a = 39:69 andb = �2:36. The data and predictions are shown in Figure 5.3.



64 Signal Processing Course, W.D. Penny, April 2000.5.4 Fourier SeriesWe might consider that our signal consists of lots of periodic components in whichcase the multiple sinusoidal model would be more appropriatex(t) = R0 + pXk=1Rk cos(2�fkt+ �k) + et (5.22)where there are p sinusoids with di�erent frequencies and phases. In a discrete Fourierseries there are p = N=2 such sinusoids having frequenciesfk = kFsN (5.23)where k = 1::N=2 and Fs is the sampling frequency. Thus the frequencies range fromFs=N up to Fs=2. The Fourier series expansion of the signal x(t) isx(t) = R0 + N=2Xk=1Rk cos(2�fkt + �k) (5.24)Notice that there is no noise term. Because of the trig identitycos(A+B) = cosA cosB � sinA sinB (5.25)this can be written in the formx(t) = a0 + N=2Xk=1 ak cos(2�fkt) + bk sin(2�fkt) (5.26)where ak = Rk cos(�k) and bk = �Rk sin(�k). Alternatively, we have R2k = a2k + b2kand � = tan�1(bk=ak). The signal at frequency fk is known as the kth harmonic.Equivalently, we can write the nth sample asx[n] = a0 + N=2Xk=1 ak cos(2�fkt[n]) + bk sin(2�fkt[n]) (5.27)where t[n] = nTs.The important things to note about the sinusoids in a Fourier series are (i) thefrequencies are equally spread out, (ii) there are N=2 of them where N is the numberof samples, (iii) Given Fs and N the frequencies are �xed. Also, note that in theFourier series `model' there is no noise. The Fourier series aims to represent the dataperfectly (which it can do due to the excessive number of basis functions)2.The Fourier coe�cients can be computed by a generalisation of the process used tocompute the coe�cients in the simple sinusoidal model.ak = 2N NXn=1 cos(2�fkt[n])x[n] (5.28)2Statisticians would frown on �tting a model with N coe�cients toN data points as the estimateswill be very noisy; the Fourier series is a low bias (actually zero), high variance model. This underlinesthe fact that the Fourier methods are transforms rather than statistical models.



Signal Processing Course, W.D. Penny, April 2000. 65Similarly, bk = 2N NXn=1 sin(2�fkt[n])x[n] (5.29)a0 = 1N NXn=1x[n] (5.30)These equations can be derived as follows. To �nd, for example, ak, multiply bothsides of equation 5.27 by cos(2�fkt[n]) and sum over n. Due to the orthogonalityproperty of sinusoids (which still holds as all frequencies are integer multiples of abase frequency) all terms on the right go to zero except for the one involving ak. Thisjust leaves ak(N=2) on the right giving rise to the above formula.5.4.1 ExampleThe plots on the right of Figure 5.4 show four components in a Fourier series expan-sion. The components have been ordered by amplitude. The plots on the left of theFigure show the corresponding Fourier approximation.5.5 Fourier TransformsFourier series are representations of a signal by combinations of sinewaves of di�erentmagnitudes, frequencies and o�sets (or phases). The magnitudes are given by theFourier coe�cients. These sinewaves can also be represented in terms of complexexponentials (see the appendix for a quick review of complex numbers); a representa-tion which ultimately leads to algorithms for computing the Fourier coe�cients; theDiscrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT).5.5.1 Discrete Fourier TransformFourier series can be expressed in terms of complex exponentials. This representationleads to an e�cient method for computing the coe�cients. We can write the cosineterms as complex exponentialsak cos(2�fkt[n]) = ak exp(i2�fkt[n]) + exp(�i2�fkt[n])2 (5.31)where i2 = �1. Picture this as the addition of two vectors; one above the real axisand one below. Together they make a vector on the real axis which is then halved.We can also write the sine terms asbk sin(2�fkt[n]) = bk exp(i2�fkt[n])� exp(�i2�fkt[n])2i (5.32)
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Figure 5.4: Signal (solid line) and components of the Fourier series approximationPpk=1Rkcos(2�fk+�k) (dotted lines) with (a) p = 1, (b) p = 2, (c) p = 3 and (d) p =11 where we have ordered the components according to amplitude. The correspondingindividual terms are (e) R2 = 0:205,f = 3:75 and � = 0:437, (f) R2 = 0:151, f = 2:5and � = 0:743, (g) R2 = 0:069, f = 11:25 and � = 0:751 and (h) R2 = 0:016,f = 7:5 and � = �0:350.



Signal Processing Course, W.D. Penny, April 2000. 67Picture this as one vector above the real axis minus another vector below the realaxis. This results in a purely imaginary (and positive) vector. The result is halvedand then multiplied by the vector exp(3�=2) (�i, from multplying top and bottomby i) which provides a rotation to the real axis.Adding them (and moving i to the numerator by multiplying bk top and bottom byi) gives 12(ak � bki) exp(i2�fkt[n]) + 12(ak + bki) exp(�i2�fkt[n]) (5.33)Note that a single term at frequency k has split into a complex combination (the co-e�cients are complex numbers) of a positive frequency term and a negative frequencyterm. Substituting the above result into equation 5.27 and noting that fkt[n] = kn=Nwe getx[n] = a0 + 12 N=2Xk=1(ak � bki) exp(i2�kn=N) + 12 N=2Xk=1(ak + bki) exp(�i2�kn=N) (5.34)If we now let ~X(k) = N2 (ak � bki) (5.35)and note that for real signals ~X(�k) = ~X�(k) (negative frequencies are re
ectionsacross the real plane, ie. conjugates) then the (ak + bki) terms are equivalent to~X(�k). Hencex[n] = a0 + 12N N=2Xk=1 ~X(k) exp(i2�kn=N) + 12N N=2Xk=1 ~X(k) exp(�i2�kn=N) (5.36)Now, because ~X(N � k) = ~X(�k) (this can be shown by considering the Fouriertransform of a signal x[n] and using the decomposition exp(�i2�(N � k)n=N) =exp(�i2�N=N) exp(i2�kn=N) where the �rst term on the right is unity) we can writethe second summation asx[n] = a0 + 12N N=2Xk=1 ~X(k) exp(i2�kn=N) + 12N N�1Xk=N=2 ~X(k) exp(�i2�(N � k)n=N)(5.37)Using the same exponential decomposition allows us to writex[n] = a0 + 1N N�1Xk=1 ~X(k) exp(i2�kn=N) (5.38)If we now let X(k + 1) = ~X(k) then we can absorb the constant a0 into the sumgiving x[n] = 1N NXk=1X(k) exp(i2�(k � 1)n=N) (5.39)which is known as the Inverse Discrete Fourier Transform (IDFT). The terms X(k)are the complex valued Fourier coe�cients. We have the relationsa0 = RefX(1)g (5.40)



68 Signal Processing Course, W.D. Penny, April 2000.ak = 2NRefX(k + 1)gbk = �2N ImfX(k + 1)gThe complex valued Fourier coe�cients can be computed by �rst noting the orthog-onality relationsNXn=1 exp(i2�(k � 1)n=N) = N k = 1;�(N + 1);�(N + 2)0 otherwise (5.41)If we now multiply equation 5.39 by exp(�i2�ln=N), sum from 1 to N and re-arrangewe get X(k) = NXn=1x(n) exp(�i2�(k � 1)n=N) (5.42)which is the Discrete Fourier Transform (DFT).5.5.2 The Fourier MatrixIf we write X(k) as a vector X = [X(1); X(2); :::; X(N)]T and the input signal asa vector x = [x(0); x(1); :::; x(N � 1)]T then the above equations can be written inmatrix form as follows. The Inverse Discrete Fourier Transform isx = FX (5.43)where F is the Fourier Matrix and the Discrete Fourier Transform isX = F�1x (5.44)If we let wN = exp(i2�=N) (5.45)we can write the Fourier matrix asFN = 1N 266666664 1 1 1 : 11 wN w2N : w(N�1)N1 w2N w4N : w2(N�1)N: : : : :1 w(N�1)N w2(N�1)N : w(N�1)2N
377777775 (5.46)

which has elements3 (FN)kn = w(k�1)(n�1)N (5.47)3We have re-indexed such that we now have x(0) to x(N � 1). Hence we have (n� 1) instead ofn.



Signal Processing Course, W.D. Penny, April 2000. 69Now, the inverse Fourier matrix isF�1N = 266666664 1 1 1 : 11 w�1N w�2N : w�(N�1)N1 w�2N w�4N : w�2(N�1)N: : : : :1 w�(N�1)N w�2(N�1)N : w�(N�1)2N
377777775 (5.48)where the elements are (F�1N )kn = w�(k�1)(n�1)N (5.49)In the Fast Fourier Transform (FFT) an N -dimensional matrix multiplication can bereplaced by 2 M -dimensional multiplications, where M = N=2. This is because theexponential elements in the Fourier matrix have the key propertyw2N = wM (5.50)eg. exp(i2�=64)2 = exp(i2�=32). Cooley and Tukey realised you could use thisproperty as follows. If you split the IDFTxj = N�1Xk=0 wjkNXk (5.51)into a summation of even parts and a summation of odd partsxj = M�1Xk=0 w2jkN X2k + M�1Xk=0 w(2k+1)jN X2k+1 (5.52)then we can use the identity w2N = wM to givexj = M�1Xk=0 wjkMX2k + wjN M�1Xk=0 wkjMX2k+1 (5.53)which is the summation of two IDFTs of dimension M (a similar argument appliesfor the DFT).This reduces the amount of computation by, approximately, a factor of 2. We can thenreplace each M -dimensional multiplication by an M=2-dimensional one, etc. FFTsrequire N to be a power of 2, because at the lowest level we have lots of 2-dimensionaloperations. For N = 4096 we get an overall speed-up by a factor of 680. For largerN the speed-ups are even greater; we are replacing N2 multiplications by N2 log2N .5.6 Time-Frequency relationsSignals can be operated on in the time domain or in the frequency domain. We nowexplore the relations between them.



70 Signal Processing Course, W.D. Penny, April 2000.5.6.1 Power Spectral DensityThe power in a signal is given by Px = NXn=1 jx[n]j2 (5.54)We now derive an expression for Px in terms of the Fourier coe�cients. If we notethat jx[n]j can also be written in its conjugate form (the conjugate form has the samemagnitude; the phase is di�erent but this does'nt matter as we're only interested inmagnitude) jx[n]j = 1N NXk=1X�(k) exp(�i2�(k � 1)n=N) (5.55)then we can write the power asPx = NXn=1 jx[n] 1N NXk=1X�(k) exp(�i2�(k � 1)n=N)j (5.56)If we now change the order of the summations we getPx = 1N NXk=1 jX�(k) NXn=1 x(n) exp(�i2�(k � 1)n=N)j (5.57)where the sum on the right is now equivalent to X(k). HencePx = 1N NXk=1 jX(k)j2 (5.58)We therefore have an equivalence between the power in the time domain and thepower in the frequency domain which is known as Parseval's relation. The quantityPx(k) = jX(k)j2 (5.59)is known as the Power Spectral Density (PSD).5.6.2 FilteringThe �ltering process x[n] = 1Xl=�1x1(l)x2(n� l) (5.60)is also known as convolution x[n] = x1(n) � x2(n) (5.61)We will now see how it is related to frequency domain operations. If we let w =2�(k� 1)=N , multiply both sides of the above equation by exp(�iwn) and sum overn the left hand side becomes the Fourier transformX(w) = 1Xn=�1x[n] exp(�iwn) (5.62)



Signal Processing Course, W.D. Penny, April 2000. 71and the right hand side (RHS) is1Xn=�1 1Xl=�1x1(l)x2(n� l) exp(�iwn) (5.63)Now, we can re-write the exponential term as followsexp(�iwn) = exp(�iw(n� l)) exp(�iwl) (5.64)Letting n0 = n� l, we can write the RHS as1Xl=�1x1(l) exp(�iwl) 1Xn0=�1x2(n0) exp(�iwn0) = X1(w)X2(w) (5.65)Hence, the �ltering operation is equivalent toX(w) = X1(w)X2(w) (5.66)which means that convolution in the time domain is equivalent to multiplication inthe frequency domain. This is known as the convolution theorem.5.6.3 Autocovariance and Power Spectral DensityThe autocovariance of a signal is given by�xx(n) = 1Xl=�1x(l)x(l � n) (5.67)Using the same method that we used to prove the convolution theorem, but notingthat the term on the right is x(l � n) not x(n � l) we can show that the RHS isequivalent to X(w)X(�w) = jX(w)j2 (5.68)which is the Power Spectral Density, Px(w). Combining this with what we get for theleft hand side gives Px(w) = 1Xn=�1�xx(n) exp(�iwn) (5.69)which means that the PSD is the Fourier Transform of the autocovariance. This isknown as the Wiener-Khintchine Theorem. This is an important result. It meansthat the PSD can be estimated from the autocovariance and vice-versa. It also meansthat the PSD and the autocovariance contain the same information about the signal.It is also worth noting that since both contain no information about the phase of asignal then the signal cannot be uniquely constructed from either. To do this we needto know the PSD and the Phase spectrum which is given by�(k) = tan�1( bkak ) (5.70)



72 Signal Processing Course, W.D. Penny, April 2000.where bk and ak are the real Fourier coe�cients.We also note that the Fourier transform of a symmetric function is real. This isbecause symmetric functions can be represented entirely by cosines, which are them-selves symmetric; the sinewaves, which constitute the complex component of a Fourierseries, are no longer necessary. Therefore, because the autocovariance is symmetricthe PSD is real.5.7 Spectral Estimation5.7.1 The PeriodogramThe periodogram of a signal xt is a plot of the normalised power in the kth harmonicversus the frequency, fk of the kth harmonic. It is calculated asI(fk) = N4� (a2k + b2k) (5.71)where ak and bk are the Fourier coe�cients.The periodogram is a low bias (actually unbiased) but high variance 4 estimate of thepower at a given frequency. This is therefore a problem if the number of data pointsis small; the estimated spectrum will be very spiky.To overcome this, a number of algorithms exist to smooth the periodogram ie. toreduce the variance. The Bartlett method, for example, takes an N -point sequenceand subdivides it into K nonoverlapping segments and calculates I(fk) for each. The�nal periodogram is just the average over the K estimates. This results in a reductionin variance by a factor K at the cost of reduced spectral resolution (by a factor K).The Welch method is similar but averages modi�ed periodograms, the modi�cationbeing a windowing of each segment of data. Also, the segments are allowed to overlap.For further details of this and other smoothing methods see Chapter 12 in Proakisand Manolakis [51]. This smoothing is necessary because at larger lags there are fewerdata points, so the estimates of covariance are commensurately more unreliable.5.7.2 Autocovariance methodsThe PSD can be calculated from the autocovariance. However, as the sample auto-covariance on short segments of data has a high variance then so will the resultingspectral estimates.To overcome this a number of proposals have been made. The autocovariance func-tion can �rst be smoothed and truncated by applying various smoothing windows,4It is an inconsistent estimator, because the variance does'nt reduce to zero as the number ofsamples tends to in�nity.



Signal Processing Course, W.D. Penny, April 2000. 73for example Tukey, Parzen, Hanning or Hamming windows. For further details seeChat�eld p.114 [11] or Chapter 12 in Proakis and Manolakis [51].5.7.3 AliasingBecause of aliasing if we wish to uniquely identify frequencies up to BHz then wemust sample the data at a frequency fs > 2BHz.Alternatively, given a particular sample rate fs, in order to uniquely identify frequen-cies up to fs=2Hz (and not confuse them with higher frequencies) we must ensure thatthere is no signal at frequencies higher than fs=2. This can be achieved by applyinga Low-Pass Filter (LPF).5.7.4 FilteringThere are two main classes of �lters; IIR �lters and FIR �lters. Their names derivefrom how the �lters respond to a single pulse of input, their so-called impulse response.The output of an In�nite Impulse Response (IIR) �lter is fed-back to its input. Theresponse to a single impulse is therefore a gradual decay which, though it may droprapidly towards zero (no output), will never technically reach zero; hence the nameIIR.In Finite Impulse Response (FIR) �lters the output is not fed-back to the input soif there is no subsequent input there will be no output. The output of an FIR �lter([51], page 620) is given by y[n] = p�1Xk=0 bkx[n� k] (5.72)where x[n] is the original signal and bk are the �lter coe�cients.The simplest FIR �lter is the (normalised) rectangular window which takes a movingaverage of a signal. This smooths the signal and therefore acts a low-pass �lter.Longer windows cut down the range of frequencies that are passed.Other examples of FIR �lters are the Bartlett, Blackman, Hamming and Hanningwindows shown in Figure 5.5. The curvier shape of the windows means their frequencycharacteristics are more sharply de�ned. See Chapter 8 in [51] for more details. FIR�lters are also known as Moving Average (MA) models which we will encounter inthe next lecture.The output of an IIR �lter is given byy[n] = pa�1Xk=0 aky[n� k] + pb�1Xk=0 bkx[n� k] (5.73)where the �rst term includes the feedback coe�cients and the second term is an FIR
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Figure 5.5: Filter coe�cients of (a) Bartlett (triangular), (b) Blackman, (c) Hammingand (d) Hanning windows for p = 30.
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Figure 5.6: Frequency response of a Hamming window (solid line) and a rectangularwindow (dotted line). The Hamming window cuts of the higher frequencies moresharply.



Signal Processing Course, W.D. Penny, April 2000. 75model. This type of �lter is also known as a Autoregressive Moving Average (ARMA)model (the �rst term being the Autoregressive (AR) part).IIR �lters can be designed by converting analog �lters into the above IIR digital form.See [51] (section 8.3) for details. Examples of resulting IIR implementations are theButterworth, Chebyshev, Elliptic and Bessel �lters.


