
Chapter 11
Kalman Filters
11.1 IntroductionWe describe Bayesian Learning for sequential estimation of parameters (eg. means,AR coe�cients). The update procedures are known as Kalman Filters. We show howDynamic Linear Models, Recursive Least Squares and Steepest Descent algorithmsare all special cases of the Kalman �lter.11.1.1 Sequential Estimation of Nonstationary MeanIn the lecure on Bayesian methods we described the sequential estimation of a sta-tionary mean. We now extend that analysis to the nonstationary case.A reasonable model of a time varying mean is that it can drift from sample to sample.If the drift is random (later on we will also consider deterministic drifts) then we have�t = �t�1 + wt (11.1)where the random drift is Gaussian p(wt) = N(wt; 0; �2w) with drift variance �2w. Thedata points are then Gaussian about mean �t. If they have a �xed variance �2x (lateron we will also consider time-varing variance)xt = �t + et (11.2)where et = xt � �t. Hence p(et) = N(et; 0; �2x).At time t � 1 our estimate of �t�1 has a Gaussian distribution with mean �̂t�1 andvariance �̂2t�1. We stress that this is the variance of our mean estimate and not thevariance of the data. The standard error estimate for this variance (�2t =t) is no longervalid as we have nonstationary data. We therefore have to estimate it as we go along.This means we keep running estimates of the distribution of the mean. At time t� 1this distribution has a mean �̂t�1 and a variance �̂2t�1. The distribution at time t is127



128 Signal Processing Course, W.D. Penny, April 2000.then found from Bayes rule. Speci�cally, the prior distribution is given byp(�t) = N(�t; �̂t�1; rt) (11.3)where rt is the prior variance (we add on the random drift variance to the variancefrom the previous time step) rt = �̂2t�1 + �2w (11.4)and the likelihood is p(xtj�t) = N(xt; �̂t�1; �2x) (11.5)The posterior is then given by p(�tjxt) = N(�t; �̂t; �̂2t ) (11.6)where the mean is �̂t = �̂t�1 + rt�2x + rt (xt � �̂t�1) (11.7)and the variance is �̂2t = rt�2xrt + �2x (11.8)We now write the above equations in a slightly di�erent form to allow for comparisonwith later estimation procedures �̂t = �̂t�1 +Ktet (11.9)�̂2t = rt(1�Kt)where Kt = rt�2x + rt (11.10)and et = xt � �̂t�1 (11.11)In the next section we will see that our update equations are a special case of aKalman �lter where et is the prediction error and Kt is the Kalman gain.In �gure 11.1 we give a numerical example where 200 data points were generated; the�rst 100 having a mean of 4 and the next 100 a mean of 10. The update equationshave two paramaters which we must set (i) the data variance �2x and (ii) the driftvariance �2w. Together, these parameters determine (a) how responsive the trackingwill be and (b) how stable it will be. The two plots are for two di�erent values of �2wand �2x = 1. Later we will see how these two parameters can be learnt.11.1.2 A single state variableWe now look at a general methodology for the sequential estimation of a nonstationaryparameter (this can be anything - not necesarily the data mean).
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Figure 11.1: Sequential estimation of nonstationary mean. The graphs plotdata values xt (crosses) and estimated mean values �̂t (circles) along with error bars�̂t (vertical lines) versus iteration number t for two di�erent drift noise values (a)�2w = 0:01 and (b) �2w = 0:1.The parameter's evolution is modelled as a linear dynamical system. The state-spaceequations are �t = gt�t�1 + wt; wt � N(wt; 0; �2w)xt = ft�t + et; et � N(et; 0; �2x) (11.12)The value of the parameter at time t is referred to as the state of the system �t. Thisstate can change deterministically, by being multiplied by gt, and stochastically byadded a random drift wt. This drift is referred to as state noise. The observed data(eg. time series values) are referred to as observations xt which are generated fromthe state according to the second equation. This allows for a linear transformationplus the addition of observation noise.At time t � 1 our estimate of �t�1 has a Gaussian distribution with mean �̂t�1 andvariance �̂2t�1. The prior distribution is therefore given byp(�t) = N(�t; gt�̂t�1; rt) (11.13)where rt is the prior variance rt = g2t �̂2t�1 + �2w (11.14)and the likelihood is p(xtj�t) = N(xt; ft�̂t�1; �2x) (11.15)The posterior is then given by p(�tjxt) = N(�t; �̂t; �̂2t ) (11.16)where �̂t = gt�̂t�1 +Ktet (11.17)�̂2t = rt(1�Ktft)and Kt = rt�2x + f 2t rt ft (11.18)



130 Signal Processing Course, W.D. Penny, April 2000.The above equations constitute a 1-dimensionalKalman Filter (the state is 1-dimensionalbecause there is only 1 state variable). Next we consider many state variables.11.1.3 Multiple state variablesWe now consider linear dynamical systems where data is generated according to themodel �t = Gt�t�1 +wt; wt � N(wt; 0;W t)yt = F t�t + vt; vt � N(vt; 0;V t) (11.19)where �t are `state' or `latent' variables, Gt is a `ow' matrix, wt is `state noise'distributed according to a normal distribution with zero mean and covariance matrixW t, yt are the multivariate observations, F t is a transformation matrix and vt is`observation noise' distributed according to a normal distribution with zero meanand covariance matrix V t. The model is parameterised by the matrices Gt, W t, F tand V t. These parameters may depend on t (as indicated by the subscript).The Kalman �lter is a recursive procedure for estimating the latent variables, �t [29].Meinhold and Singpurwalla [40] show how this estimation procedure is derived (alsosee lecture on Bayesian methods). The latent variables are normally distributed witha mean and covariance that can be estimated with the following recursive formulae�̂t = Gt�̂t�1 +Ktet (11.20)�t = Rt �KtF tRtwhere Kt is the `Kalman gain' matrix, et is the prediction error and Rt is the `priorcovariance' of the latent variables (that is, prior to yt being observed). These quan-tities are calculated as followsKt = RtF Tt �V t + F tRtF Tt ��1 (11.21)et = yt � F tGt�̂t�1Rt = Gt�t�1GTt +W tTo apply these equations you need to know the parameters Gt, W t,F t and V t andmake initial guesses for the state mean and covariance; �̂0 and �0. Equations (3) and(2) can then be applied to estimate the state mean and covariance at the next timestep. The equations are then applied recursively.



Signal Processing Course, W.D. Penny, April 2000. 131A useful quantity is the likelihood of an observation given the model parametersbefore they are updatedp(yt) = N �yt;F t�̂t�1;V t + F t �GTt �t�1Gt�F Tt � (11.22)In Bayesian terminology this likelihood is known as the evidence for the data point[14]. Data points with low evidence correspond to periods when the statistics of theunderlying system are changing (non-stationarity) or, less consistently, to data pointshaving large observation noise components.The state-space equations may be viewed as a dynamic version of factor analysiswhere the factor, �t, evolves over time according to linear dynamics. Shumway andSto�er [56] derive an Expectation-Maximisation (EM) algorithm (see next lecture)in which the parameters of the model G, W and V can all be learnt. Only F isassumed known. Note that these parameters are no longer dependent on t. This doesnot, however, mean that the model is no longer dynamic; the state, �t, is still timedependent. Ghahramani and Hinton [22] have recently extended the algorithm toallow F to be learnt as well. These learning algorithms are batch learning algorithmsrather than recursive update procedures. They are therefore not suitable for `on-line'learning (where the learning algorithm has only one `look' at each observation).In the engineering and statistical forecasting literature [44] [11] the transformationmatrix, F t, is known. It is related to the observed time series (or other observed timeseries) according to a known deterministic function set by the statistician or `modelbuilder'. Assumptions are then made about the ow matrix, Gt. Assumptions arealso made about the state noise covariance,W t, and the observation noise covariance,V t, or they are estimated on-line. We now look at a set of assumptions which reducesthe Kalman �lter to a `Dynamic Linear Model'.11.1.4 Dynamic Linear ModelsIn this section we consider Dynamic Linear Models (DLMs) [11] which for a univariatetime series are �t = �t�1 +wt; wt � N(wt; 0;W t)yt = F t�t + vt; vt � N(vt; 0; �2t ) (11.23)This is a linear regression model with time-varying coe�cients. It is identical to thegeneric Kalman �lter model withGt = I. Substituting this into the update equationsgives �̂t = �̂t�1 +Ktet (11.24)�t = Rt �KtF tRt



132 Signal Processing Course, W.D. Penny, April 2000.where Kt = RtF Tt�2̂yt (11.25)Rt = �t�1 +W t�2̂yt = �2t + �2��2� = F tRtF Ttet = yt � ŷtŷt = F t�̂t�1 (11.26)where ŷt is the prediction and �2̂yt is the estimated prediction variance. This is com-posed of two terms; the observation noise, �2t , and the component of prediction vari-ance due to state uncertainty, �2� . The likelihood of a data point under the old model(or evidence) is p(yt) = N �yt; ŷt; �2̂yt� (11.27)If we make the further assumption that the transformation vector (its no longer amatrix because we have univariate predictions) is equal to F t = �[yt�1; yt�2; :::; yt�p]then we have a Dynamic Autoregressive (DAR) model.To apply the model we make initial guesses for the state (AR parameters) mean andcovariance (�̂0 and �0) and use the above equations. We must also plug in guessesfor the state noise covariance, W t, and the observation noise variance, �2t . In a latersection we show how these can be estimated on-line. It is also often assumed that thestate noise covariance matrix is the isotropic matrix, W t = qI. Next, we look at aset of assumptions that reduce the Kalman �lter to Recursive Least Squares.11.1.5 Recursive least squaresIf there is no state noise (wt = 0,W t = 0) and no state ow (Gt = I) then the lineardynamical system in equation (1) reduces to a static linear system (�t = �). If wefurther assume that our observations are univariate we can re-write the state-spaceequations as yt = F t� + vt; vt � N(vt; 0; �2t ) (11.28)This is a regression model with constant coe�cients. We can, however, estimate thesecoe�cients in a recursive manner by substituting our assumptions aboutW t, Gt andV t into the Kalman �lter update equations. This gives



Signal Processing Course, W.D. Penny, April 2000. 133�̂t = �̂t�1 +Ktet (11.29)�t = �t�1 �KtF t�t�1 (11.30)where Kt = �t�1F Tt�2̂yt (11.31)�2̂yt = �2t + �2��2� = F t�t�1F Ttet = yt � ŷtŷt = F t�̂t�1 (11.32)where ŷt is the prediction and �2̂yt is the estimated prediction variance. This is com-posed of two terms; the observation noise, �2t , and the component of prediction vari-ance due to state uncertainty, �2� .The above equations are identical to the update equations for recursive least squares(RLS) as de�ned by Abraham and Ledolter (equation (8.60) in [1]).The likelihood of a data point under the old model (or evidence) isp(yt) = N �yt; ŷt; �2̂yt� (11.33)If we make the further assumption that the transformation vector (its no longer amatrix because we have univariate predictions) is equal to F t = �[yt�1; yt�2; :::; yt�p]then we have a recursive least squares estimation procedure for an autoregressive(AR) model.To apply the model we make initial guesses for the state (AR parameters) mean andcovariance (�̂0 and �0) and use the above equations. We must also plug in our guessfor the observation noise variance, �2t . In a later section we show how this can beestimated on-line.11.1.6 Estimation of noise parametersTo use the DLM update equations it is necessary to make guesses for the state noisecovariance, W t, and the observation noise variance, �2t . In this section we showhow these can be estimated on-line. Note, we either estimate the state noise or theobservation noise - not both.



134 Signal Processing Course, W.D. Penny, April 2000.Jazwinski's method for estimating state noiseThis method, reviewed in [14] is ultimately due to Jazwinski [28] who derives thefollowing equations using the MLII approach (see Bayes lecture). We assume thatthe state noise covariance matrix is the isotropic matrix,W = qI. The parameter qcan be updated according to q = h e2 � �2q0F tF Tt ! (11.34)where h(x) is the `ramp' functionh(x) = ( x if x � 00 otherwise (11.35)and �2q0 is the estimated prediction variance assuming that q = 0�2q0 = �2t + F t�t�1F Tt (11.36)Thus, if our estimate of prediction error assuming no state noise is smaller than ourobserved error (e2) we should infer that the state noise is non-zero. This will happenwhen we transit from one stationary regime to another; our estimate of q will increase.This, in turn, will increase the learning rate (see later section). A smoothed estimateis qt = �qt�1 + (1� �)h e2 � �2q0F tF Tt ! (11.37)where � is a smoothing parameter. Alternatively, equation 11.34 can be applied to awindow of samples [14].Jazwinski's method for estimating observation noiseThis method, reviewed in [14] is ultimately due to Jazwinski [28] who derives the fol-lowing equations by applying the MLII framework (see Bayes lecture). Equation 11.26shows that the estimated prediction variance is composed of two components; the ob-servation noise and the component due to state uncertainty. Thus, to estimate theobservation noise one needs to subtract the second component from the measuredsquared error �2t = h �e2t � F tRt�1F Tt � (11.38)



Signal Processing Course, W.D. Penny, April 2000. 135This estimate can be derived by setting �2t so as to maximise the evidence (likelihood)of a new data point (equation 11.27). A smoothed estimate is�2t = ��2t�1 + (1� �)h �e2t � F tRt�1F Tt � (11.39)where � is a smoothing parameter. Alternatively, equation 11.38 can be applied to awindow of samples [14].For RLS these update equations can be used by substituting Rt = �t�1. We stress,however, that this estimate is especially unsuitable for RLS applied to non-stationaritydata (but then you should only use RLS for stationary data, anyway). This is becausethe learning rate becomes dramatically decreased.We also stress that Jazwinski's methods cannot both be applied at the same time; the'extra' prediction error is explained either as greater observation noise or as greaterstate noise.Skagens' methodSkagen [57] lets W = ��2t I ie. assumes the state noise covariance is isotropic with avariance that is proportional to the observation noise �2t .He observes that if � is kept �xed then varying �2t over six orders of magnitude haslittle or no e�ect on the Kalman �lter updates. He therefore sets �2t to an arbitraryvalue eg. 1.He then de�nes a measure R as the relative reduction in prediction error due toadaption and chooses � to give a value of R = 0:5.11.1.7 Comparison with steepest descentFor a linear predictor, the learning rule for `on-line' steepest descent is [3]�̂t = �̂t�1 + �F Tt et (11.40)where � is the learning rate, which is �xed and chosen arbitrarily beforehand. Thismethod is otherwise known as Least Mean Squares (LMS). Haykin [27] (page 362)discusses the conditions on � which lead to a convergent learning process. Comparisonof the above rule with the DLM learning rule in equation 11.25 shows that DLM hasa learning rate matrix equal to � = �t�1 + qtI�2t + �2� (11.41)The average learning rate, averaged over all state variables, is given by



136 Signal Processing Course, W.D. Penny, April 2000.�DLM = 1p Tr (�t�1 + qtI)(�2t + �2�) (11.42)where Tr() denotes the trace of the covariance matrix and p is the number of statevariables.DLM thus uses a learning rate which is directly proportional to the variance of thestate variables and is inversely proportional to the estimated prediction variance.If the prediction variance due to state uncertainty is signi�cantly smaller than theprediction variance due to state noise (�2� � �2t ), as it will be once the �lter hasreached a steady solution, then increasing the state noise parameter, qt, will increasethe learning rate. This is the mechanism by which DLM increases its learning ratewhen a new dynamic regime is encountered.The average learning rate for the RLS �lter is�RLS = 1p Tr (�t�1)(�2t + �2�) (11.43)As there is no state noise (qt = 0) there is no mechanism by which the learning ratecan be increased when a new dynamic regime is encountered. This underlines the factthat RLS is a stationary model. In fact, RLS behaves particularly poorly when givennon-stationary data. When a new dynamic regime is encountered, �2� will increase(and so may �2t if we're updating it online). This leads not to the desired increase inlearning rate, but to a decrease.For stationary data, however, the RLS model behaves well. As the model encountersmore data the parameter covariance matrix decreases which in turn leads to a decreasein learning rate. In on-line gradient descent learning it is desirable to start with ahigh learning rate (to achieve faster convergence) but end with a low learning rate(to prevent oscillation). RLS exhibits the desirable property of adapting its learningrate in exactly this manner. DLM also exhibits this property when given stationarydata, but when given non-stationary data, has the added property of being able toincreasing its learning rate when necessary.We conclude this section by noting that DLM and RLS may be viewed as linear on-line gradient descent estimators with variable learning rates; RLS for stationary dataand DLM for non-stationary data.11.1.8 Other algorithmsThe Least Mean Squares (LMS) algorithm [27] (Chapter 9) is identical to the steepest-descent method (as described in this paper) - both methods have constant learningrates.



Signal Processing Course, W.D. Penny, April 2000. 137Our comments on the RLS algorithm are relevant to RLS as de�ned by Abrahamand Ledolter [1]. There are, however, a number of variants of RLS. Haykin [27](page 564) de�nes an exponentially weighted RLS algorithm, where past samplesare given exponentially less attention than more recent samples. This gives riseto a limited tracking ability (see chapter 16 in [27]). The tracking ability can befurther improved by adding state noise (Extended RLS-1 [27], page 726) or a non-constant state transition matrix (Extended RLS-2 [27], page 727). The ExtendedRLS-1 algorithm is therefore similar to the DAR model described in this paper.11.1.9 An exampleThis example demonstrates the basic functioning of the dynamic AR model andcompares it to RLS.A time series was generated consisting of a 10Hz sine wave in the �rst second, a 20Hzsinewave in the second second and a 30Hz sine wave in the third second. All signalscontained additive Gaussian noise with standard deviation 0.1. One hundred sampleswere generated per second.A DAR model with p = 8 AR coe�cients was trained on the data. The algorithmwas given a �xed value of observation noise (�2t = 0:2). The state noise was initiallyset to zero and was adapted using Jazwinski's algorithm described in equation 11.34,using a smoothing value of � = 0:1. The model was initialised using linear regression;the �rst p data points were regressed onto the p + 1th data point using an SVDimplementation of least squares, resulting in the linear regression weight vector wLR.The state at time step t = p + 1 was initialised to this weight vector; �p+1 = wLR.The initial state covariance matrix was set to the linear regression covariance matrix,�p+1 = �2tF p+1F Tp+1. Model parameters before time p+ 1 were set to zero.An RLS model (with p = 8 AR coe�cients) was also trained on the data. Thealgorithm was given a �xed value of observation noise (�2t = 0:2). The model wasinitilised by setting �p+1 = wLR and �p+1 = I (setting �p+1 = �2tF p+1F Tp+1 resultedin an initial learning rate that was'nt su�ciently large for the model to adapt to thedata - see later).Figure 11.2 shows the original time series and the evidence of each point in the timeseries under the DAR model. Data points occuring at the transitions between di�erentdynamic regimes have low evidence.Figure 11.3 shows that the state noise parameter, q, increases by an amount necessaryfor the estimated prediction error to equal the actual prediction error. The state noiseis high at transitions between di�erent dynamic regimes. Within each dynamic regimethe state noise is zero.Figure 11.4 shows that the variance of state variables reduces as the model is exposedto more data from the same stationary regime. When a new stationary regime isencountered the state variance increases (because q increases).
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Figure 11.2: (a) Original time series (b) Log evidence of data points under DARmodel, log p(yt).Figure 11.5 shows that the learning rate of the DAR model increases when the systementers a new stationary regime, whereas the learning rate of RLS actually decreases.The RLS learning rate is initially higher because the state covariance matrix wasinitialised di�erently (initialising it in the same way gave much poorer RLS spectralestimates).Figure 11.6 shows the spectral estimates obtained from the DAR and RLS models.The learning rate plots and spectrogram plots show that DAR is suitable for non-stationary data whereas RLS is not.11.1.10 DiscussionDynamic Linear Models, Recursive Least Squares and Steepest-Descent Learning.are special cases of linear dynamical systems and their learning rules are special casesof the Kalman �lter. Steepest-Descent Learning is suitable for modelling stationarydata. It uses a learning rate parameter which needs to be high at the beginning oflearning (to ensure fast learning) but low at the end of learning (to prevent oscilla-tions). The learning rate parameter is usually hand-tuned to ful�ll these criteria. Re-cursive Least Squares is also suitable for modelling stationary data. It has the advan-tage of having an adaptive learning rate that reduces gradually as learning proceeds.It reduces in response to a reduction in the uncertainty (covariance) of the modelparameters. Dynamic Linear Models are suitable for stationary and non-stationaryenviroments. The models possess state-noise and observation noise parameters whichcan be updated on-line so as to maximise the evidence of the observations.
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Figure 11.3: (a) Squared prediction error, e2t , (b) Estimated prediction error withqt = 0, �2q0, (c) Estimated prediction error, �2̂yt (the baseline level is due to the �xedobservation noise component, �2t = 0:2) and (d) Estimate of state noise variance, qt.The state noise, qt, increases by an amount necessary for the estimated predictionerror (plot c) to equal the actual predicition error (plot a) - see equation 11.34.
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Figure 11.4: Average prior variance of state variables, 1pTr(Rt). As the model isexposed to more data from the same stationary regime the estimates of the statevariables become more accurate (less variance). When a new stationary regime isencountered the state variance increases (because q increases).
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Figure 11.5: Average learning rates for (a) DAR model (b) RLS model. The learningrate for RLS is set to a higher initial value (indirectly by setting � to have largerentries) to give it a better chance of tracking the data. The DAR model responds to anew dynamic regime by increasing the learning rate. The RLS responds by decreasingthe learning rate and is therefore unable to track the nonstationarity.
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Figure 11.6: Spectrograms for (a) DAR model (b) RLS model.


