
Chapter 9
Nonlinear Methods
9.1 IntroductionThis chapter covers entropy, mutual information, correlation sums, source entropyand nonlinear prediction.To motivate the use of nonlinear methods we give a simple example of where othermethods fail. Our example is the logistic mapxt+1 = Rxt(1� xt) (9.1)which is nonlinear because of the x2t term. Di�erent values of R are known to producedi�erent dynamics; R=3.5 and 3.6 produce periodic dynamics and R=4 produceschaotic dynamics. A `chaotic' system is a low-dimensional nonlinear determnisticsystem which is sensitive to initial conditions. Because of the `folding' in the logistic
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Figure 9.1: A plot of xt+1 versus xt for logistic map function xt+1 = 4xt(1 � xt). Ifxt+1 = 0:7, then what was xt ? Was it 0.23 or 0.77 ?map, for example, the system quickly forgets where its been before. Also, a slightchange in the initial conditions soon leads to a big change in the subsequent state ofthe system. 107



108 Signal Processing Course, W.D. Penny, April 2000.For R = 4 the Power Spectral Density (PSD) is at which is reminiscent of whitenoise (the corresponding autocovariance is only sign�ciantly non-zero at zero lag).Application of autoregressive models yields prediction errors with the same variance
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Figure 9.2: (a) Time series from the logistic map (R = 4) and (b) its Power SpectralDensityas the signal itself; ie. they are unable to detect any deterministic component in thesignal. Thus, the application of linear methods would lead us to mistakenly concludethat the signal is purely stochastic when in fact it is purely deterministic.If we apply nonlinear methods, however, then the underlying determinism can bediscovered. This holds the promise of short-term predictability when, under thehypothesis of linear dynamics the system was considered to be unpredictable.Also most early claims that physiological systems were chaotic have since been dis-credited. What is a more plausible working hypothesis, however, is that whilst thesesystems may not be nonlinear and deterministic they may very well be nonlinear andstochastic, and there is much evidence for this [23].We look at methods for detecting nonlinear dependencies such as the mutual informa-tion and marginal mutual information and methods for exploiting these dependenciesfor purposes of prediction, such as local-linear methods and neural networks.9.2 Lyapunov ExponentsA de�ning characteristic of a chaotic system is sensitivity to initial conditions. Pointswhich are near at time 0 become exponentially far apart at time t. This can becaptured in the relation dt = d0e�t (9.2)where d0 is the initial distance, dt is the distance at time t and � is the Lyapunovexponent. Re-arranging the above equation gives� = limt!1 log dtd0 (9.3)



Signal Processing Course, W.D. Penny, April 2000. 109�1 �2 �3 Attractor- - - Fixed Point0 - - Cycle0 0 - Torus+ 0 - ChaoticTable 9.1: Relation of sign of Lyaponov exponents to type of attractor.Negative �'s indicate convergence (damping) and positive �'s indicate divergence.Exponents equal to zero indicate cycles.If the points are in a d-dimensional embedding space then neighboring points willinitially be contained in a small multidimensional sphere. As time progresses thissphere will be stretched to form an ellipsoid with the length of the ith principal axisat time t given by di(t). There is a corresponding spectrum of Lyapunov exponents;one for each axis. If we consider a 3-dimensional system, for example, then therelation between the signs of the Lyapunov exponents and the type of attractors isshown in Table 9.2. See [41] for more details.The exponents can be calculate from a data set using the relation�i = limt!1 log di(t)d0 (9.4)Lyapunov exponents can be calculated from box-counting algorithms or from pre-dictive models. In the last approach, for example, we can �t a neural network tothe data, calculate the networks Jacobian matrix J (the derivative of the network'soutput with respect to its inputs - see Bishop [3] for details) and �nd �i from aneigendecomposition of J ([30] page 174). See also [13].9.3 Measures of InformationSee earlier lecture on Information Theory.9.3.1 Continuous variablesIn order to apply information theory to continuous variables we can partition con-tinuous space into a number of discrete bins 1. If we use M bins and observe nioccurences in the ith bin then the probability of the value xi occuring isp(xi) = niN (9.5)1An alternative is to use a parametric model to estimate the probability density p(x) from whichH(x) can be calculated. The entropy of such a continuous variable is known as the di�erentialentropy [12].



110 Signal Processing Course, W.D. Penny, April 2000.where N is the total number of samples.As we increase the number of bins, so the entropy increases.If we have two continuous variables x and y and partition the two-dimensional spaceinto bins where the number of levels in each dimension is M then the probability ofa vector is given by p(xi; yi) = nijN (9.6)where there are nij samples in the i; jth bin and a total of N samples. The totalnumber of bins will be M2. The entropy of the above distribution is the joint entropy(see equation 4.5) and the mutual information can be calculated from 4.15. In general,these discretization procedures can be applied to d variables. But because the numberof bins is Md we need a lot of data to estimate the probabilities. As an alternativeto box-counting algorithms we could use tree search algorithms or correlation summethods (see later). See Pineda and Sommerer [48] for a review.9.3.2 Measures of Information for Time SeriesIf our d continuous variables have come from a d-dimensional embedding of a timeseries eg. xi = [xi; xi�1; :::; xi�d+1] (9.7)and we partition the d-dimensional space into bins where the number of levels in eachdimension is M then the probability of a vector is given bypd(xi) = niN � d+ 1 (9.8)where there are ni samples in the ith bin and a total of N � d + 1 samples. Thetotal number of bins will be Md so we need long time series to get good probabilityestimates.Given a signal that has a range V the bin width will be r = V=M . The entropy ofthe above distribution is the joint entropyHd(�; r) = � MdXi=1 pd(xi) log pd(xi) (9.9)where � is the lag between samples. The mutual information, de�ned for d = 2, isI(�; r) = 2H1(�; r)�H2(�; r) (9.10)It tells us about the nonlinear (or linear) correlation between xt�� and xt and byvaring � we can plot an autocorrelation function. Figure 9.3 shows a plot of thisfor the logistic map time series. The entropies were calculated using a correlationsum method (see later) rather than a box-counting method. The mutual informationreduces from about 4 at a lag of zero to nearly zero after 5 time steps. This makessense as with the logistic map we lose about 1 bit of information per iteration. The
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Figure 9.3: Mutual Information, I(�; r) versus lag � for Logistic Map data. A reso-lution r = 0:1�x was used where �x is the standard deviation of the datafolding of the attractor acts like a switch and we lose about 1 bit of information perswitch press.For general d we can de�ne the joint mutual information as the di�erence betweenthe scalar entropies and the joint entropyId(�; r) = dH1(�; r)�Hd(�; r) (9.11)The joint mutual information measures the amount of information about xt containedindependently in the previous d samples ie. if we were to build a predictor, each ofthe previous d samples could be used but no interaction terms would be allowed.9.3.3 Marginal Mutual InformationThe joint mutual information measures the di�erence between the measured jointentropy of d variables and their joint entropy as if they were independent. For thespecial case d = 2 it therefore measures the amount of information about xt containedin the previous sample xt�� . For d = 3 and above, however, the correspondingmeasure is the marginal mutual information (or incremental mutual information orredundancy) Rd(�; r) = Id(�; r)� Id�1(�; r) (9.12)We can re-write this in terms of joint entropiesRd(�; r) = H1(�; r) +Hd�1(�; r)�Hd(�; r) (9.13)Here the e�ect of the d � 1 previous variables is considered jointly (in the secondterm) whereas in the joint mutual information they were considered independently.The marginal mutual information, Rd(�; r) measures the amount of information aboutxt contained in the previous d samples. For d = 2 the marginal mutual informationreduces to the mutual information.



112 Signal Processing Course, W.D. Penny, April 2000.9.3.4 Source EntropyThe Approximate Source Entropy statistics [47] are de�ned asApEn(d; r; N) = Hd(�; r)�Hd�1(�; r) (9.14)and ApEn(d; r) = limN!1[Hd(�; r)�Hd�1(�; r)] (9.15)They are approximations to the source entropy or KS-entropy (from Mr. Kolmogorovand Mr Sinai) which is de�ned ashKS(�) = limr!0 limd!1ApEn(d; r) (9.16)Now, because of the limits, the KS�Entropy can never be estimated experimentally(and, besides, it is only really of interest for purely deterministic sytems). But ApEncan, and as long as the embedding dimension is large enough and the resolution �neenough it will provide a good approximation. That is,hKS(�) � ApEn(d; r) (9.17)Moreover, we can relate it to the marginal mutual information. If we substitute theabove relation into equation 9.13 we getRd(�; r) = H1(�; r)� hKS(�) (9.18)Given that (see Weigend [63] page 50, or equation 9.42 later on)hKS(�) = �hKS (9.19)then we have Rd(�; r) = H1(�; r)� �hKS (9.20)Thus hKS is the gradient of a plot of Rd(�; r) versus � . The d previous samplescontain an amount of information Rd(�; r) about the present sample which decreasesas the time lag � is increased. The rate of decrease is governed by the source entropy.So, at a time lag of zero, the second term on the right is zero. The marginal mutualinformation is equal to the scalar entropy of the signal and the signal is completelypredictable.At each additional time step our predictive accuracy (which is governed by themarginal mutual information) loses hKS bits. After a certain number of time steps,pt, the marginal mutual information will fall to zero and all prediction accuracy willbe lost.In practice, zero prediction accuracy occurs when the the variance of the predictionerror equals the variance of the signal �2x. Given a prediction accuracy at zero lag ofe0 (equal to the resolution of the signal) after pt time steps the accuracy will be�x = e02pthKS (9.21)



Signal Processing Course, W.D. Penny, April 2000. 113Taking logs (to the base 2) gives pt = log(�x=e0)hKS (9.22)Therefore we must know the initial conditions exponentially more accurately (ex-ponential decrease in e0) to get a linear increase of the prediction horizon pt. Bymeasuring hKS we can estimate the prediction horizon. Conversely, by measuring theprediction horizon, from a predictive model (see later), we can estimate hKS.9.3.5 Correlation SumsAs an alternative to box-counting algorithms we can use correlation sums to estimatethe joint entropy (and therefore the mutual information and the source entropy). Ifwe embed a time series in d-dimensional lag space such thatxi = [xi; xi�1; :::; xi�d+1] (9.23)then we can measure the maximum distance between two points asjxi � xjj = maxk fxi�k+1 � xj�k+1g (9.24)ie. look along the k out of d dimensions and pick the biggest distance. If we de�nethe step function (or Heaviside function) as h(x) = 1 for x � 0 and h(x) = 0 forx < 0 then the indicator functionIr(xi;xj) = h(r � jxi � xjj) (9.25)is 1 if the maximum distance between two points is less than r, and zero otherwise.We can now de�ne the pointwise correlation sum asCdi (r) = 1N � d+ 1 N�d+1Xj=1 Ir(xi;xj) (9.26)which is the proportion of points within distance r of the point xi. As such thisprovides a good estimate for the probability density at point ipd(xi) = Cdi (r) (9.27)The joint entropy can be approximated as the average log of this inverse probability[16] Hd(r) = �1N � d+ 1 N�d+1Xi=1 log pd(xi) (9.28)Note that the sum is now over i whereas before it was over j. This method wasused to calculate the mutual information in the earlier example. Now the probabilitypd(xi) can be decomposed aspd(xi) = p(x1i ; x2i ; ::; xdi ) (9.29)= p(xdi jx1i ; x2i ; ::; xd�1i )p(x1i ; x2i ; ::; xd�1i )= p(xdi jx1i ; x2i ; ::; xd�1i )pd�1(xi)



114 Signal Processing Course, W.D. Penny, April 2000.Substituting this into the de�nitions for the joint entropies gives an expression forthe approximate source entropyApEn(d; r; N) = �1N � d+ 1 N�d+1Xi=1 log p(xdi jx1i ; x2i ; ::; xd�1i ) (9.30)Therefore, the approximate source entropy can be interpreted as the average log of aconditional probability; the probability that points are within distance r in embed-ding dimension d given that they were within this distance in embedding dimensiond�1. Application of ApEn to the logistic map shows that it is able to detect the dif-ference between the `simpler' periodic regime and the more complex `chaotic' regime.Application of ApEn to physiological signals is discussed in [23, 52, 47]. See PincusR ApEn3.5 0.03.6 0.2293.8 0.425Table 9.2: Approximate entropy of the logistic map time series with d = 3, N = 300,r = 0:1�x. Increasing R increases the complexity of the time series which is reectedin higher values of ApEn.[47] for a discussion on how to select r.9.4 Nonlinear PredictionGiven a time series xn where n = 1::N we wish to predict future values of the seriesie xN+1; xN+2 etc. If we view the time series up to time N as a �xed data set D thenthis can be achieved by inferring a statistical model from the data and using thismodel to predict future values of the signal.This could, for example, be achieved by an autoregressive model which predicts thenext value in the time series eg xN+1 as a linear combination of the p previous valuesx̂N+1 = w1xN + w2xN�1 + :::+ wkxN�k+1 (9.31)where wk are the autoregressive coe�cients (see earlier lecture). These can be `learnt'by tuning the model to the data set D.This same process can be repeated but with a more powerful class of predictivemodels; nonlinear predictors. These replace the linear function in the above equationwith a nonlinear functionx̂N+1 = f(w; xN ; xN�1; ::; xN�k+1) (9.32)having parameters w. Nonlinear predictors may be categorized into two broad classes(i) Local methods and (ii) Global methods.



Signal Processing Course, W.D. Penny, April 2000. 1159.4.1 Local methodsGiven a data set of N embedded points D = fxng we can make a nonlinear predictionof a future time series value xp+T from the embedded data point xp as follows. Firstly,we �nd the k-nearest neighbours amongst D. That is, the k points in D whichminimise the distance jjxn � xpjj (9.33)Put these points, ~xn, in rows of a matrixX and put the corresponding 'future' values~xn+T into the vector Y . We now �t a linear modelY = wX (9.34)in the usual manner w = (XTX)�1XTY (9.35)and we can then use it to make the predictionx̂p+T = wxp (9.36)This constitutes a local autoregressive model since only points in the neighbourhoodof the predicting region have been used. As k ! N we get the usual (global) autore-gresive model.A plot of prediction error versus k shows whether a local linear model (which isglobally nonlinear) or a global linear model is appropriate. These plots are knownas Deterministic versus Stochastic (DVS) plots [9]. For stochastic linear dynamicsk ! N gives the smallest error and for deterministic nonlinear dynamics k ! 2d+1,where d is the dimension of the attractor, gives the smallest error. Physiological data,such as heart rate or EEG, is in-between; it varies from nonlinear-stochastic to linearstochastic.A cautionary note in the interpretation of these plots is due to the issue of stationarity.This is because a nonstationary linear system may be viewed as a stationary nonlinearsystem. The two viewpoints are both valid descriptions of the same dynamics.
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Figure 9.4: (a) Intensity pulsations of a laser and (b) heart rate.
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Figure 9.5: Plots of (log) prediction error, E, versus (log) neighbourhood size, k, for(a) laser data and (b) heart-rate data. The minimum error points are at (a) logk = 3,k = 21 and (b) logk = 4:5, k = 91. These indicate that (a) the laser data is nonlinearand deterministic and (b) the heart-rate data is nonlinear and stochastic.DenoisingNot only can local methods be used for nonlinear prediction but also for nonlineardenoising. If, for example, the above linear prediction step is replaced by an SVDstep we have a local-SVD denoising algorithm. This can also be used in combinationwith local prediction methods - see Sauer et. al in [63].9.4.2 Global methodsProbably the most powerful nonlinear predictor is a Neural Network and the mostcommonly used network is the Multi-Layer Perceptron (MLP). This consists of anumber of layers of processing elements (usually only two). The �rst layer consists ofa number of linear transforms which are then operated on by a nonlinearity. Thereare j = 1::p such functions each called a hidden unithj = f( dXi=1wijxn�i) (9.37)where i sums over the embedding and f is usually a sigmoidal nonlinearityf(a) = 11 + e�a (9.38)The output of the second layer gives the networks prediction which is a linear com-bination of hidden unit responses x̂n+T = dXj=p vjhj (9.39)Given a data set of of embedded vectors xn and corresponding future values xn+T(often T = 1) the parameters of the model can be set so as to minimise the prediction



Signal Processing Course, W.D. Penny, April 2000. 117error E = NXn=1(xn+T � x̂n+T )2 (9.40)This can be achieved by various non-linear optimisation algorithms. The number ofhidden units can be chosen according to various model order selection criterion. SeeBishop [3] for details.Application of neural nets to some time series, eg. the laser data, shows them to bebetter predictors than linear methods by several orders of magnitude [63].Other global nonlinear methods involve the use of polynomial functions or Volterraseries. Predictions are formed from linear combinations of quadratic and higher orderterms eg. x̂n+T = w1xn + w2x2n + w3xnxn�1 + w4xn�1 + ::: (9.41)The number and order of such functions can be found empirically or from priorknowledge of the possible interactions.9.5 DiscusionA nonlinear dynamical system, with or without added stochastic noise, can thus becharacterised by a number of measures: (i) source entropy, (ii) prediction error and(iii) Lyapunov exponents and there are relations between them. There are also manymore measures that we have'nt discussed. Most of these are relevant to nonlineardeterministic systems rather than nonlinear stochastic ones. (the most prominentbeing correlation dimension [24]).To use them to, say, di�erentiate between di�erent physiological states or experimen-tal conditions requires not just estimating the measures themselves but also providingerror bars so we can apply signi�cance tests.For these `nonlinear' statistics, these most often take the form of Monte-Carlo esti-mates. Given a particular time series we compute our measure of interest, say ApEn.We then shu�e the data and recompute the statistic. If we do this for a number ofshu�es then where on the resulting PDF our original value falls is the signi�cancevalue.The sum of the positive Lyapunov exponents is equal to the source entropyhKS = X�i>0�i (9.42)This is known as Pesin's Identity 2. This completes the circle: Source Entropy !Nonlinear Prediction ! Lyapunov Exponents ! Source Entropy etc.2In fact, it is an upper bound on the source entropy [30]


