
Chapter 1
Statistics
1.1 IntroductionThis lecture is a quick review of basic statistical concepts; probabilities, mean, vari-ance, covariance, correlation, linear regression, probability density functions and sig-ni�cance testing.1.2 Probabilities1.2.1 Discrete VariablesThe table below shows the probability of occurrence p(x = xi) of selected lettersxi in the English alphabet. Table 2 shows the probability of occurence of selectedxi p(xi)a 0.06e 0.09j 0.00q 0.01t 0.07z 0.00Table 1.1: Probability of letterspairs of letters xi and yj where xi is followed by yj. This is called the joint probabilityp(x = xi; y = yi). If we �x x to, say xi then the probability of y taking on a particularvalue, say yj, is given by the conditional probabilityp(y = yjjx = xi) = p(x = xi; y = yj)p(x = xi) (1.1)13



14 Signal Processing Course, W.D. Penny, April 2000.xi yj p(xi; yj)t h 0.037t s 0.000t r 0.012Table 1.2: Probability of pairs of lettersFor example, if xi = t and yj = h then the joint probability p(x = xi; y = yj) isjust the probability of occurence of the pair (which table 2 tells us is 0:037). Theconditional probability p(y = yjjx = xi), however, says that, given we've seen theletter t, what's the probability that the next letter will be h (which is, from tables 1and 2, 0:037=0:07 = 0:53). Re-arranging the above relationship givesp(x = xi; y = yj) = p(y = yjjx = xi)p(x = xi) (1.2)Now if y does not depend on x then p(y = yjjx = xi) = p(y = yj). Hence, forindependent variables, we havep(x = xi; y = yj) = p(y = yj)p(x = xi) (1.3)The marginal probability is given byp(x = xi) = Xfyjg p(y = yj; x = xi) (1.4)This is the same probability that we started with.1.2.2 Continuous VariablesThe probability of a continuous variable, x, assuming a particular value or rangeof values is de�ned by a Probability Density Funcion (PDF), p(x). Probability ismeasured by the area under the PDF; the total area under a PDF is therefore unityZ p(x)dx = 1 (1.5)The probability of x assuming a value between a and b is given byp(a � x � b) = Z ba p(x)dx (1.6)which is the area under the PDF between a and b. The probability of x taking on asingle value is therefore zero. This makes sense because we are dealing with continuousvalues; as your value becomes more precise the probability for it decreases. It onlymakes sense, therefore to talk about the probability of a value being within a certainprecision or being above or below a certain value.
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Figure 1.1: (a) The Gaussian Probability Density Function with mean � = 3 andstandard deviation � = 2, (b) The standard Gaussian density, p(z). This has zeromean and unit variance.To calculate such probabilities we need to calculate integrals like the one above. Thisprocess is simpli�ed by the use of Cumulative Density Functions (CDF) which arede�ned as CDF (a) = p(x � a) = Z a�1 p(x)dx (1.7)Hence p(a � x � b) = CDF (b)� CDF (a) (1.8)1.2.3 The Gaussian DensityThe Normal or Gaussian probability density function, for the case of a single variable,is p(x) � N(x;�; �2) = 1(2��2)1=2 exp �(x� �)22�2 ! (1.9)where � and �2 are known as the mean and variance, and � (the square root of thevariance) is called the standard deviation. The quantity in front of the exponentialensures that R p(x)dx = 1. The above formula is often abbreviated to the shorthandp(x) = N(x;�; �). The terms Normal and Gaussian are used interchangeably.If we subtract the mean from a Gaussian variable and then divide by that variablesstandard deviation the resulting variable, z = (x��)=�, will be distributed accordingthe standard normal distribution, p(z) = N(z; 0; 1) which can be writtenp(z) = 1(2�)1=2 exp �z22 ! (1.10)The probability of z being above 0:5 is given by the area to the right of 0:5. We cancalculate it as p(z) � 0:5 = Z 10:5 p(z)dz (1.11)= 1� CDFGauss(0:5)where CDFGauss is the cumulative density function for a Gaussian.



16 Signal Processing Course, W.D. Penny, April 2000.1.2.4 Probability relationsThe same probability relations hold for continuous variables as for discrete variablesie. the conditional probability is p(yjx) = p(x; y)p(x) (1.12)Re-arranging gives the joint probabilityp(x; y) = p(yjx)p(x) (1.13)which, if y does not depend on x (ie. x and y are independent) means thatp(x; y) = p(y)p(x) (1.14)1.3 Expectation and MomentsThe expected value of a function f(x) is de�ned asE[f(x)] �< f(x) >= Z p(x)f(x)dx (1.15)and E[] is referred to as the expectation operator, which is also sometimes writtenusing the angled brackets <>. The kth moment of a distribution is given byE[xk] = Z p(x)xkdx (1.16)The mean is therefore the �rst moment of a distribution.E[x] = Z p(x)xdx = � (1.17)The kth central moment of a distribution is given byE[(x� �)k] = Z p(x)(x� �)kdx (1.18)The variance is therefore the second central momentE[(x� �)2] = Z p(x)(x� �)2dx = �2 (1.19)Sometimes we will use the notationV ar(x) = E[(x� �)2] (1.20)The third central moment is skewness and the fourth central moment is kurtosis (seelater). In the appendix we give examples of various distributions and of skewness andkurtosis.



Signal Processing Course, W.D. Penny, April 2000. 171.4 Maximum Likelihood EstimationWe can learn the mean and variance of a Gaussian distribution using the MaximumLikelihood (ML) framework as follows. A Gaussian variable xn has the PDFp(xn) = 1(2��2)1=2 exp �(x� �)22�2 ! (1.21)which is also called the likelihood of the data point. Given N Independent andIdentically Distributed (IID) (it is often assumed that the data points, or errors, areindependent and come from the same distribution) samples y = [y1; y2; ::; yN ] we havep(y) = NYn=1 p(yn) (1.22)which is the likelihood of the data set. We now wish to set � and �2 so as to maximisethis likelihood. For numerical reasons (taking logs gives us bigger numbers) this ismore conveniently achieved by maximising the log-likelihood (note: the maximum isgiven by the same values of � and �)L � log p(y) = �N2 log 2� � N2 log�2 � NXn= (yn � �)22�2 (1.23)The optimal values of � and � are found by setting the derivatives dLd� and dLd� to zero.This gives � = 1N NXn=1 yn (1.24)and �2 = 1N NXn=1(yn � �)2 (1.25)We note that the last formula is di�erent to the usual formula for estimating variance�2 = 1N � 1 NXn=1(xn � �)2 (1.26)because of the di�erence in normalisation. The last estimator of variance is preferredas it is an unbiased estimator (see later section on bias and variance).If we had an input-dependent mean, �n = wxn, then the optimal value for w can befound by maximising L. As only the last term in equation 1.23 depends on w thistherefore corresponds to minimisation of the squared errors between �n and yn. Thisprovides the connection between ML estimation and Least Squares (LS) estimation;ML reduces to LS for the case of Gaussian noise.
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Figure 1.2: (a) Positive correlation, r = 0:9 and (b) Negative correlation, r = �0:7.The dotted horizontal and vertical lines mark �x and �y.1.5 Correlation and Regression1.5.1 CorrelationThe covariance between two variables x and y is measured as�xy = 1N � 1 NXn=1(xi � �x)(yi � �y) (1.27)where �x and �y are the means of each variable. Note that �yx = �xy. Sometimes wewill use the notation V ar(x; y) = �xy (1.28)If x tends to be above its mean when y is above its mean then �xy will be positive. Ifthey tend to be on opposite sides of their means �xy will be negative. The correlationor Pearson's correlation coe�cient is a normalised covariancer = �xy�x�y (1.29)such that�1 � r � 1, a value of�1 indicating perfect negative correlation and a valueof +1 indicating perfect positive correlation; see Figure 1.2. A value of 0 indicatesno correlation. The strength of a correlation is best measured by r2 which takes onvalues between 0 and 1, a value near to 1 indicating strong correlation (regardless ofthe sign) and a value near to zero indicating a very weak correlation.1.5.2 Linear regressionWe now look at modelling the relationship between two variables x and y as a linearfunction; given a collection of N data points fxi; yig, we aim to estimate yi from xiusing a linear model ŷi = axi + b (1.30)
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Figure 1.3: The linear regression line is �tted by minimising the vertical distancebetween itself and each data point. The estimated lines are (a) ŷ = 0:9003x+ 0:2901and (b) ŷ = �0:6629x+ 4:9804.where we have written ŷ to denote our estimated value. Regression with one inputvariable is often called univariate linear regression to distinguish it from multivariatelinear regression where we have lots of inputs. The goodness of �t of the model tothe data may be measured by the least squares cost functionE = NXi=1(yi � ŷi)2 (1.31)The values of a and b that minimize the above cost function can be calculated bysetting the �rst derivatives of the cost function to zero and solving the resulting si-multaneous equations (derivatives are used to �nd maxima and minima of functions).The result is derived in the Appendix. The solutions area = �xy�2x (1.32)and b = �y � a�x (1.33)where �x and �y are the mean observed values of the data and �2x and �xy are theinput variance and input-output covariance. This enables least squares �tting of aregression line to a data set as shown in Figure 1.3.The model will �t some data points better than others; those that it �ts well constitutethe signal and those that it does'nt �t well constitute the noise. The strength of thenoise is measured by the noise variance�2e = 1N � 1 NXi=1(yi � ŷi)2 (1.34)and the strenth of the signal is given by �2y��2e . The signal-to-noise ratio is therefore(�2y � �2e)=�2e .Splitting data up into signal and noise components in this manner (ie. breaking downthe variance into what the model explains and what it does not) is at the heart ofstatistical procedures such as analysis of variance (ANOVA) [32].



20 Signal Processing Course, W.D. Penny, April 2000.Relation to correlationThe correlation measure r is intimately related to the linear regression model. Indeed(by substituting �xy from equation 1.27 into equation 1.32) r may be expressed asr = �x�y a (1.35)where a is the slope of the linear regression model. Thus, for example, the sign ofthe slope of the regression line de�nes the sign of the correlation. The correlationis, however, also a function of the standard deviation of the x and y variables; forexample, if �x is very large, it is possible to have a strong correlation even thoughthe slope may be very small.The relation between r and linear regression emphasises the fact that r is only ameasure of linear correlation. It is quite possible that two variables have a strongnonlinear relationship (ie. are nonlinearly correlated) but that r = 0. Measures ofnonlinear correlation will be discussed in a later lecture.The strenth of correlation can also be expressed in terms of quantites from the linearregresssion model r2 = �2y � �2e�2y (1.36)where �2e is the noise variance and �2y is the variance of the variable we are trying topredict. Thus r2 is seen to measure the proportion of variance explained by a linearmodel, a value of 1 indicating that a linear model perfectly describes the relationshipbetween x and y.1.6 Bias and VarianceGiven any estimation process, if we repeat it many times we can look at the expected(or average) errors (the di�erence between true and estimated values). This is com-prised of a systematic error (the 'bias') and an error due to the variability of the�tting process (the 'variance'). We can show this as follows.Let w be the true value of a parameter and ŵ be an estimate from a given sample.The expected squared error of the estimate can be decomposed as followsE = E[(ŵ � w)2] (1.37)= E[(ŵ � E[ŵ] + E[ŵ]� w)2]where the expectation is wrt. the distribution over ŵ and we have introduced E[ŵ],the mean value of the estimate. Expanding the square givesE = E[(ŵ � E[ŵ])2 + (E[ŵ]� w)2 + 2(ŵ � E[ŵ])(E[ŵ]� w)] (1.38)= E[(ŵ � E[ŵ])]2 + (E[ŵ]� w)2= V +B2
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Figure 1.4: Fitting a linear regression model (dotted line) to data points (circles) whichare generated from a quadratic function (solid line) with additive noise (of variance0.01).where the third term has dropped out because E[ŵ] � E[ŵ] = 0. The error thusconsists of two terms (i) a variance term V and (ii) a bias term; the square of thebias, B2.Estimates of parameters are often chosen to be unbiased ie. to have zero bias. Thisis why we see the 1=(N � 1) term in an estimate of variance, for example.Simple models (eg. linear models) have a high bias but low variance whereas morecomplex models (eg. polynomial models) have a low bias but a high variance. Toselect the optimal model complexity, or model order, we must solve this bias-variancedilemma [20].1.7 Minimum variance estimationThere is a lower bound to the variance of any unbiased estimate which is given byV ar(�̂) � 1E[@L(D; �)=@�]2 (1.39)where L(D; �) � log p(D; �) is the log-likelihood of the data and the expectation istaken wrt. p(D; �). This is known as the Cramer-Rao bound. Any estimator thatattains this variance is called the Minimum Variance Unbiased Estimator (MVUE).The denominator, being an inverse variance, therefore measures the maximum preci-sion with which we can estimate �. It is known as the Fisher InformationI(�) = E[@L(D; �)=@�]2 (1.40)



22 Signal Processing Course, W.D. Penny, April 2000.

(a) 0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(b) 0 0.2 0.4 0.6 0.8 1
0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

Figure 1.5: (a) Bias component B and (b) Variance component V . The bias representsa systematic error in our modelling procedure (ie. �tting a quadratic function witha linear function); the linear model systematically underpredicts at the edges andoverpredicts in the middle. The variance represents the variability of the model �ttingprocess; linear models lock on to the middle of a data set and then set their slopeas necessary. The variance is therefore less in the middle than at the edges; in themiddle this variance is simply the variance of the additive noise (0.01). The expectedprediction error at any point is the sum of the variance plus the bias squared.For unbiased estimates [53] it can also be expressed asI(�) = �E[@2L(D; �)=@�2] (1.41)1.8 Statistical InferenceWhen we estimate the mean and variance from small samples of data our estimatesmay not be very accurate. But as the number of samples increases our estimates getmore and more accurate and as this number approaches in�nity the sample meanapproaches the true mean or population mean. In what follows we refer to the samplemeans and variances as m and s and the population means and standard deviationsas � and �.Hypothesis Testing: Say we have a hypothesis H which is The mean value of mysignal is 32. This is often referred to as the null hypothesis or H0. We then get somedata and testH which is then either accepted or rejected with a certain probability orsigni�cance level, p. Very often we choose p = 0:05 (a value used throughout science).We can do a one-sided or a two-sided statistical test depending on exactly what thenull hypothesis is. In a one-sided test our hypothesis may be (i) our parameter is lessthan x or (ii) our parameter is greater than x. For two-sided tests our hypothesis isof the form (iii) our parameter is x. This last hypothesis can be rejected if the samplestatistic is either much smaller or much greater than it should be if the parametertruly equals x.



Signal Processing Course, W.D. Penny, April 2000. 231.8.1 MeansTo �nd out if your mean is signi�cantly di�erent from a hypothesized value � thereare basically two methods. The �rst assumes you know the population/true varianceand the second allows you to use the sample variance.Known varianceIf we estimate the mean from a sample of data, then this estimate itself has a mean anda standard deviation. The standard deviation of the sample mean is (see appendix)�m = �=pN (1.42)where � is the known true standard deviation. The probability of getting a particularsample mean from N samples is given by p(z) wherez = m� ��=pN (1.43)For example, suppose we are given 50 data points from a normal population withhypothesized mean � = 32 and standard deviation � = 2 and we get a sample meanof 32:3923, as shown in Figure 1.6. The probability of getting a sample mean at leastthis big is p(m > 32:3923) = 1� CDFGauss(z) (1.44)where z = (32:3923 � 32)=(2=p50) = 1:3869 which is (from tables or computerevaluation) 0:0827 ie. reasonably likely; we would accept the hypothesis at the p =0:05 level (because we are doing a two-sided test we would accept H0 unless theprobability was less than p = 0:025).Unknown varianceIf we don't know the true variance we can use the sample variance instead. We canthen calculate the statistic t = m� �s=pN (1.45)which is distributed according the t-distribution (see appendix). Now, the t-distributionhas a parameter v, called the degrees of freedom (DF). It is plotted in Figure 1.7 withv = 3 and v = 49 degrees of freedom; smaller v gives a wider distribution.Now, from our N = 50 data points we calculated the sample variance ie. given,originally, 50 DF we have used up one DF leaving N � 1 = 49 DF. Hence, ourt-statistic has v = 49 degrees of freedom.Assume we observed s = 2 and m = 32:3923 (as before) and our hypothesized meanis 32. We can calculate the associated probability fromp(m > 32:3923) = 1� CDFt(t) (1.46)
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Figure 1.6: N=50 data points. The hypthosized mean value of 32 is shown as a dottedline and the sample mean as a solid line.
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Figure 1.7: The t-distribution with (a) v = 3 and (b) v = 49 degrees of freedom.where t = (32:3923 � 32=(2=p50) = 1:3869. From tables this gives 0:0859 ie. rea-sonably likely (again, because we are doing a two-sided test, we would accept H0unless the probability was less than p = 0:025). Notice, however, that the probabilityis higher than when we knew the standard deviation to be 2. This shows that a t-distribution has heavier tails than a Normal distribution ie. extreme events are morelikely.1.8.2 RegressionIn a linear regression model we are often interested in whether or not the gradient issigni�cantly di�erent from zero or other value of interest.To answer the question we �rst estimate the variance of the slope and then perform



Signal Processing Course, W.D. Penny, April 2000. 25a t-test. In the appendix we show that the variance of the slope is given by 1�2a = �2e(N � 1)�2x (1.47)We then calculate the t-statistic t = a� ah�a (1.48)where ah is our hypothesized slope value (eg. ah may be zero) and look up p(t)with N � 2 DF (we have used up 1DF to estimate the input variance and 1DF toestimate the noise variance). In the data plotted in Figure 1.3(b) the estimatedslope is a = �0:6629. From the data we also calculate that �a = 0:077. Hence,to �nd out if the slope is signi�cantly non-zero we compute CDFt(t) where t =�0:6629=0:077 = �8:6. This has a p-value of 10�13 ie. a very signi�cant value.To �nd out if the slope is signi�cantly di�erent from �0:7 we calculate CDFt(t) fort = (�0:6629+0:7)=0:077 = 0:4747 which gives a p-value of 0:3553 ie. not signi�cantlydi�erent (again, we must bear in mind that we need to do a two-sided test; see earlier).1.8.3 CorrelationBecause of the relationship between correlation and linear regression we can �ndout if correlations are signi�cantly non-zero by using exactly the same method asin the previous section; if the slope is signi�cantly non-zero then the correspondingcorrelation is also signi�cantly non-zero.By substituting a = (�y=�x)r (this follows from equation 1.32 and equation 1.29) and�2e = (1�r2)�2y (from equation 1.36) into equation 1.47 and then �a into equation 1.48we get the test statistic 2 t = rpN � 2p1� r2 (1.49)which has N � 2 DF.For example, the two signals in Figure 1.8(a) have, over the N = 50 given samples, acorrelation of r = 0:8031 which gives t = 9:3383 and a p-value of 10�12. We thereforereject the hypothesis that the signals are not correlated; they clearly are. The signalsin Figure 1.8(b) have a correlation of r = 0:1418 over the N = 50 given samples whichgives t = 0:9921 and a p-value of p = 0:1631. We therefore accept the null hypothesisthat the signals are not correlated.1When estimating �2x we should divide by N � 1 and when estimating �2e we should divide byN � 2.2Strictly, we should use �2e = N�1N�2(1� r2)�2y to allow for using N � 2 in the denominator of �2e .
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tFigure 1.8: Two signals (a) sample correlation r = 0:8031 and (b) sample correlation,r=0:1418. Strong correlation; by shifting and scaling one of the time series (ie. takinga linear function) we can make it look like the other time series.1.9 DiscussionFor a more comprehensive introduction to basic statistics, linear regression and signif-icance testing see Grimmett and Welsh [26] or Kleinbaum et al. [32]. Also, NumericalRecipes [49] has very good sections on Are two means di�erent ? and Are two vari-ances di�erent ?. See Priestley for a more comprehensive introduction to statisticalestimation in time series models ([50], chapter 5).


