Chapter 1

Statistics

1.1 Introduction

This lecture is a quick review of basic statistical concepts; probabilities, mean, vari-
ance, covariance, correlation, linear regression, probability density functions and sig-
nificance testing.

1.2 Probabilities

1.2.1 Discrete Variables

The table below shows the probability of occurrence p(x = ;) of selected letters
x; in the English alphabet. Table 2 shows the probability of occurence of selected

zi  p(rs)
a 0.06
e 0.09
j  0.00
q 0.01
t  0.07
z 0.00

Table 1.1: Probability of letters

pairs of letters x; and y; where z; is followed by y;. This is called the joint probability
p(r = i,y = y;). If we fix x to, say x; then the probability of y taking on a particular
value, say y;, is given by the conditional probability

p(@ =z, y = y;)
=) (1.1)

ply = yjlr = ;) =

13



ri y; P, y;)

t h  0.037
t s 0.000
t T 0.012

Table 1.2: Probability of pairs of letters

For example, if x; = ¢ and y; = h then the joint probability p(z = z;,y = y;) is
just the probability of occurence of the pair (which table 2 tells us is 0.037). The
conditional probability p(y = y;|v = x;), however, says that, given we've seen the
letter t, what’s the probability that the next letter will be A (which is, from tables 1
and 2, 0.037/0.07 = 0.53). Re-arranging the above relationship gives

p(x =2,y =y;) = ply = yjlo = z;)p(x = ;) (1.2)
Now if y does not depend on z then p(y = y;lz = x;) = p(y = y;). Hence, for

independent variables, we have

plx =,y =y;) =ply=y;)ple = ;) (1.3)

The marginal probability is given by

p(z =1;) = {X:}p(y =y, T = ;) (1.4)

This is the same probability that we started with.

1.2.2 Continuous Variables

The probability of a continuous variable, z, assuming a particular value or range
of values is defined by a Probability Density Funcion (PDF), p(x). Probability is
measured by the area under the PDF; the total area under a PDF is therefore unity

/p(x)dx =1 (1.5)

The probability of x assuming a value between a and b is given by

pla<z<b) = /bp(x)dx (1.6)
a
which is the area under the PDF between a and b. The probability of x taking on a
single value is therefore zero. This makes sense because we are dealing with continuous
values; as your value becomes more precise the probability for it decreases. It only
makes sense, therefore to talk about the probability of a value being within a certain
precision or being above or below a certain value.
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Figure 1.1: (a) The Gaussian Probability Density Function with mean p = 3 and
standard deviation o = 2, (b) The standard Gaussian density, p(z). This has zero
mean and unit variance.
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To calculate such probabilities we need to calculate integrals like the one above. This
process is simplified by the use of Cumulative Density Functions (CDF) which are
defined as "

CDF@%:nga%:/ p(z)dz (1.7)

Hence -
pla <x <b)=CDF(b) — CDF(a) (1.8)

1.2.3 The Gaussian Density

The Normal or Gaussian probability density function, for the case of a single variable,
is

(2m02)1/2 202

where p and o2 are known as the mean and variance, and o (the square root of the
variance) is called the standard deviation. The quantity in front of the exponential
ensures that [ p(z)dz = 1. The above formula is often abbreviated to the shorthand
p(x) = N(z;p,0). The terms Normal and Gaussian are used interchangeably.

p(r) = N o) = ——=—exp (—@> (19)

If we subtract the mean from a Gaussian variable and then divide by that variables
standard deviation the resulting variable, z = (z — u) /o, will be distributed according
the standard normal distribution, p(z) = N(z;0, 1) which can be written

p(z) = (273)1/2 exp (—%2> (1.10)

The probability of z being above 0.5 is given by the area to the right of 0.5. We can
calculate it as

p(z) > 05 = Ajp@mz (1.11)
= 1 — CDFgquss(0.5)

where C' D Fgayss is the cumulative density function for a Gaussian.



1.2.4 Probability relations

The same probability relations hold for continuous variables as for discrete variables
ie. the conditional probability is

p(z,y)
plylxr) = 1.12
() = 72 (112)
Re-arranging gives the joint probability
p(z,y) = p(ylz)p(z) (1.13)

which, if y does not depend on z (ie.  and y are independent) means that

p(z,y) = p(y)p(z) (1.14)

1.3 Expectation and Moments

The expected value of a function f(z) is defined as

Blf(@)] =< f(@) >= [ p(a)f(2)de (1.15)

and E]| is referred to as the expectation operator, which is also sometimes written
using the angled brackets <>. The kth moment of a distribution is given by

E[z*] = / p(z)a"de (1.16)
The mean is therefore the first moment of a distribution.
Elx] = /p(a;)xdx = U (1.17)

The kth central moment of a distribution is given by

Bl = )] = [ pla)o = p)de (1.18)
The variance is therefore the second central moment
Blz =’ = [ p@)(x = p)da = o* (1.19)
Sometimes we will use the notation
Var(z) = E[(x — p)?] (1.20)

The third central moment is skewness and the fourth central moment is kurtosis (see
later). In the appendix we give examples of various distributions and of skewness and
kurtosis.



1.4 Maximum Likelihood Estimation

We can learn the mean and variance of a Gaussian distribution using the Maximum
Likelihood (ML) framework as follows. A Gaussian variable x,, has the PDF

p(n) = m exp (—M> (1.21)

which is also called the likelihood of the data point. Given N Independent and
Identically Distributed (IID) (it is often assumed that the data points, or errors, are
independent and come from the same distribution) samples y = [y, ¥2, .., yn| we have

N

p(y) = 11 p(ya) (1.22)

n=1

which is the likelihood of the data set. We now wish to set x and o2 so as to maximise
this likelihood. For numerical reasons (taking logs gives us bigger numbers) this is
more conveniently achieved by maximising the log-likelihood (note: the maximum is
given by the same values of 1 and o)

(yn B M)Q

N N
L=logp(y) = —=log2mr — —logo® — > 52

1.23
5 5 3 (1.23)

The optimal values of 1 and o are found by setting the derivatives < d— and dL to zero.
This gives

1 N
=5 z:: (1.24)
and
o = %Z (9o — 1)? (1.25)

We note that the last formula is different to the usual formula for estimating variance

0 = 3 (1) (1.26)

because of the difference in normalisation. The last estimator of variance is preferred
as it is an unbiased estimator (see later section on bias and variance).

If we had an input-dependent mean, u, = wx,, then the optimal value for w can be
found by maximising L. As only the last term in equation 1.23 depends on w this
therefore corresponds to minimisation of the squared errors between p, and y,. This
provides the connection between ML estimation and Least Squares (LS) estimation;
ML reduces to LS for the case of Gaussian noise.
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Figure 1.2: (a) Positive correlation, r = 0.9 and (b) Negative correlation, r = —0.7.
The dotted horizontal and vertical lines mark (i, and p,.

1.5 Correlation and Regression

1.5.1 Correlation

The covariance between two variables x and y is measured as

1 N
Ooy = N 1 n:1(l‘z’ = 112) (Yi = Hy) (1.27)
where pi, and ji, are the means of each variable. Note that oy, = 0,,. Sometimes we
will use the notation

Var(z,y) = ogy (1.28)

If = tends to be above its mean when y is above its mean then o,, will be positive. If
they tend to be on opposite sides of their means o, will be negative. The correlation
or Pearson’s correlation coefficient is a normalised covariance

Oy

r= 2 (1.29)

040y

such that —1 < r <1, a value of —1 indicating perfect negative correlation and a value
of +1 indicating perfect positive correlation; see Figure 1.2. A value of 0 indicates
no correlation. The strength of a correlation is best measured by 7? which takes on
values between 0 and 1, a value near to 1 indicating strong correlation (regardless of
the sign) and a value near to zero indicating a very weak correlation.

1.5.2 Linear regression

We now look at modelling the relationship between two variables = and y as a linear
function; given a collection of N data points {z;, y;}, we aim to estimate y; from z;
using a linear model

U; =ax; +b (1.30)



Figure 1.3: The linear regression line is fitted by minimising the vertical distance
between itself and each data point. The estimated lines are (a) 5 = 0.9003z + 0.2901
and (b) §j = —0.6629x + 4.9804.

where we have written 3 to denote our estimated value. Regression with one input
variable is often called univariate linear regression to distinguish it from multivariate
linear regression where we have lots of inputs. The goodness of fit of the model to
the data may be measured by the least squares cost function

E= Z:(yi — 4i)° (1.31)

The values of @ and b that minimize the above cost function can be calculated by
setting the first derivatives of the cost function to zero and solving the resulting si-
multaneous equations (derivatives are used to find maxima and minima of functions).
The result is derived in the Appendix. The solutions are

Oy
and
b=y — ajiy (1.33)

where ji, and p, are the mean observed values of the data and o2 and oy, are the

input variance and input-output covariance. This enables least squares fitting of a
regression line to a data set as shown in Figure 1.3.

The model will fit some data points better than others; those that it fits well constitute
the signal and those that it does’nt fit well constitute the noise. The strength of the
noise is measured by the noise variance
2 1 & 2
o, = —— — Ui 1.34
e N _1 l:Zl(yz 9:) ( )

and the strenth of the signal is given by 05 — o2, The signal-to-noise ratio is therefore

(o —0c)/oe.

Splitting data up into signal and noise components in this manner (ie. breaking down
the variance into what the model ezplains and what it does not) is at the heart of
statistical procedures such as analysis of variance (ANOVA) [32].



Relation to correlation

The correlation measure r is intimately related to the linear regression model. Indeed
(by substituting o, from equation 1.27 into equation 1.32) r may be expressed as

o]

r=—"a (1.35)

Oy
where a is the slope of the linear regression model. Thus, for example, the sign of
the slope of the regression line defines the sign of the correlation. The correlation
is, however, also a function of the standard deviation of the x and y variables; for
example, if o, is very large, it is possible to have a strong correlation even though
the slope may be very small.

The relation between r and linear regression emphasises the fact that r is only a
measure of linear correlation. It is quite possible that two variables have a strong
nonlinear relationship (ie. are nonlinearly correlated) but that » = 0. Measures of
nonlinear correlation will be discussed in a later lecture.

The strenth of correlation can also be expressed in terms of quantites from the linear

regresssion model
2 _ 2
r?= 4 (1.36)
Ty

where o7 is the noise variance and o} is the variance of the variable we are trying to
predict. Thus 72 is seen to measure the proportion of variance explained by a linear
model, a value of 1 indicating that a linear model perfectly describes the relationship
between z and y.

1.6 Bias and Variance

Given any estimation process, if we repeat it many times we can look at the expected
(or average) errors (the difference between true and estimated values). This is com-
prised of a systematic error (the ’bias’) and an error due to the variability of the
fitting process (the ’variance’). We can show this as follows.

Let w be the true value of a parameter and w be an estimate from a given sample.
The expected squared error of the estimate can be decomposed as follows

E — E[(UAJ . w)Q] (137)
= E[(0 - E[W] + E[W] — w)?2]

where the expectation is wrt. the distribution over @ and we have introduced E[w],
the mean value of the estimate. Expanding the square gives

E = E[(w - E[w]))’+ (E[0w] — w)’+2(w — Ew])(E[w] —w)]  (1.38)
= Bl — B[0])]* + (B[] - w)’
= V+B
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Figure 1.4: Fitting a linear regression model (dotted line) to data points (circles) which
are generated from a quadratic function (solid line) with additive noise (of variance

0.01).

where the third term has dropped out because E[w] — E[w] = 0. The error thus
consists of two terms (i) a variance term V and (ii) a bias term; the square of the
bias, B?.

Estimates of parameters are often chosen to be unbiased ie. to have zero bias. This
is why we see the 1/(N — 1) term in an estimate of variance, for example.

Simple models (eg. linear models) have a high bias but low variance whereas more
complex models (eg. polynomial models) have a low bias but a high variance. To
select the optimal model complexity, or model order, we must solve this bias-variance
dilemma [20].

1.7 Minimum variance estimation

There is a lower bound to the variance of any unbiased estimate which is given by

1
OL(D, 8)/00]?

where L(D;60) = logp(D;#) is the log-likelihood of the data and the expectation is
taken wrt. p(D;#). This is known as the Cramer-Rao bound. Any estimator that
attains this variance is called the Minimum Variance Unbiased Estimator (MVUE).

Var(d) > - (1.39)

The denominator, being an inverse variance, therefore measures the maximum preci-
sion with which we can estimate 6. It is known as the Fisher Information

I(0) = E[OL(D;0)/00)? (1.40)
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Figure 1.5: (a) Bias component B and (b) Variance component V. The bias represents
a systematic error in our modelling procedure (ie. fitting a quadratic function with
a linear function); the linear model systematically underpredicts at the edges and
overpredicts in the middle. The variance represents the variability of the model fitting
process; linear models lock on to the middle of a data set and then set their slope
as necessary. The variance is therefore less in the middle than at the edges; in the
middle this variance is simply the variance of the additive noise (0.01). The expected
prediction error at any point is the sum of the variance plus the bias squared.

For unbiased estimates [53] it can also be expressed as

1(0) = —E[0°L(D;0)/06? (1.41)

1.8 Statistical Inference

When we estimate the mean and variance from small samples of data our estimates
may not be very accurate. But as the number of samples increases our estimates get
more and more accurate and as this number approaches infinity the sample mean
approaches the true mean or population mean. In what follows we refer to the sample
means and variances as m and s and the population means and standard deviations
as p and o.

Hypothesis Testing: Say we have a hypothesis H which is The mean value of my
signal ts 32. This is often referred to as the null hypothesis or Hy. We then get some
data and test H which is then either accepted or rejected with a certain probability or
significance level, p. Very often we choose p = 0.05 (a value used throughout science).

We can do a one-sided or a two-sided statistical test depending on exactly what the
null hypothesis is. In a one-sided test our hypothesis may be (i) our parameter is less
than z or (ii) our parameter is greater than x. For two-sided tests our hypothesis is
of the form (iii) our parameter is . This last hypothesis can be rejected if the sample
statistic is either much smaller or much greater than it should be if the parameter
truly equals x.



1.8.1 Means

To find out if your mean is significantly different from a hypothesized value p there
are basically two methods. The first assumes you know the population/true variance
and the second allows you to use the sample variance.

Known variance

If we estimate the mean from a sample of data, then this estimate itself has a mean and
a standard deviation. The standard deviation of the sample mean is (see appendix)

Om = a/VN (1.42)

where o is the known true standard deviation. The probability of getting a particular
sample mean from N samples is given by p(z) where
m— p
z=— 1.43

For example, suppose we are given 50 data points from a normal population with
hypothesized mean p = 32 and standard deviation 0 = 2 and we get a sample mean
of 32.3923, as shown in Figure 1.6. The probability of getting a sample mean at least
this big is

p(m > 32.3923) = 1 — CDFgauss(2) (1.44)
where z = (32.3923 — 32)/(2/v/50) = 1.3869 which is (from tables or computer
evaluation) 0.0827 ie. reasonably likely; we would accept the hypothesis at the p =
0.05 level (because we are doing a two-sided test we would accept Hy unless the
probability was less than p = 0.025).

Unknown variance

If we don’t know the true variance we can use the sample variance instead. We can

then calculate the statistic
m— [

t =
s/VN
which is distributed according the t-distribution (see appendix). Now, the t-distribution

has a parameter v, called the degrees of freedom (DF). It is plotted in Figure 1.7 with
v =3 and v = 49 degrees of freedom; smaller v gives a wider distribution.

(1.45)

Now, from our N = 50 data points we calculated the sample variance ie. given,
originally, 50 DF we have used up one DF leaving N — 1 = 49 DF. Hence, our
t-statistic has v = 49 degrees of freedom.

Assume we observed s = 2 and m = 32.3923 (as before) and our hypothesized mean
is 32. We can calculate the associated probability from

p(m > 32.3923) = 1 — CDF,(t) (1.46)
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Figure 1.6: N=50 data points. The hypthosized mean value of 32 is shown as a dotted
line and the sample mean as a solid line.
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Figure 1.7: The t-distribution with (a) v =3 and (b) v =49 degrees of freedom.

where t = (32.3923 — 32/(2//50) = 1.3869. From tables this gives 0.0859 ie. rea-
sonably likely (again, because we are doing a two-sided test, we would accept Hy
unless the probability was less than p = 0.025). Notice, however, that the probability
is higher than when we knew the standard deviation to be 2. This shows that a t-

distribution has heavier tails than a Normal distribution ie. extreme events are more
likely.

1.8.2 Regression

In a linear regression model we are often interested in whether or not the gradient is
significantly different from zero or other value of interest.

To answer the question we first estimate the variance of the slope and then perform



a t-test. In the appendix we show that the variance of the slope is given by !

A — (1.47)

We then calculate the t-statistic

(1.48)

where ay, is our hypothesized slope value (eg. a, may be zero) and look up p(¢)
with N — 2 DF (we have used up 1DF to estimate the input variance and 1DF to
estimate the noise variance). In the data plotted in Figure 1.3(b) the estimated
slope is a = —0.6629. From the data we also calculate that o, = 0.077. Hence,
to find out if the slope is significantly non-zero we compute CDF(t) where t =
—0.6629/0.077 = —8.6. This has a p-value of 107! ie. a very significant value.
To find out if the slope is significantly different from —0.7 we calculate CDF(t) for
t = (—0.6629+0.7)/0.077 = 0.4747 which gives a p-value of 0.3553 ie. not significantly
different (again, we must bear in mind that we need to do a two-sided test; see earlier).

1.8.3 Correlation

Because of the relationship between correlation and linear regression we can find
out if correlations are significantly non-zero by using exactly the same method as
in the previous section; if the slope is significantly non-zero then the corresponding
correlation is also significantly non-zero.

By substituting a = (0, /0,)r (this follows from equation 1.32 and equation 1.29) and
0, = (1—-r?)o; (from equation 1.36) into equation 1.47 and then o, into equation 1.48
we get the test statistic 2

t=—Y—- (1.49)

which has N — 2 DF.

For example, the two signals in Figure 1.8(a) have, over the N = 50 given samples, a
correlation of = 0.8031 which gives ¢ = 9.3383 and a p-value of 1072, We therefore
reject the hypothesis that the signals are not correlated; they clearly are. The signals
in Figure 1.8(b) have a correlation of r = 0.1418 over the N = 50 given samples which
gives t = 0.9921 and a p-value of p = 0.1631. We therefore accept the null hypothesis
that the signals are not correlated.

'When estimating o2 we should divide by N — 1 and when estimating 0? we should divide by
N —2.
2 _ N-1

?Strictly, we should use o2 = {=5(1 — 7“2)03 to allow for using N — 2 in the denominator of o2.
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Figure 1.8: Two signals (a) sample correlation r = 0.8031 and (b) sample correlation,
r=0.1418. Strong correlation; by shifting and scaling one of the time series (ie. taking
a linear function) we can make it look like the other time series.

1.9 Discussion

For a more comprehensive introduction to basic statistics, linear regression and signif-
icance testing see Grimmett and Welsh [26] or Kleinbaum et al. [32]. Also, Numerical
Recipes [49] has very good sections on Are two means different ? and Are two vari-
ances different 2. See Priestley for a more comprehensive introduction to statistical
estimation in time series models ([50], chapter 5).



