
Chapter 8
Subspace Methods
8.1 IntroductionPrincipal Component Analysis (PCA) is applied to the analysis of time series data.In this context we discuss measures of complexity and subspace methods for spectralestimation.8.2 Singular Spectrum Analysis8.2.1 EmbeddingGiven a single time series x1 to xN we can form an embedding of dimension d by takinglength d snapshots xt = [xt; xt+1; :::; xt+d] of the time series. We form an embeddingmatrix X with di�erent snapshots in di�erent rows. For d = 4 for exampleX = 1pN 26664 x1 x2 x3 x4x2 x3 x4 x5:: :: :: ::xN�3 xN�2 xN�1 xN 37775 (8.1)The normalisation factor is there to ensure thatXTX produces the covariance matrix(see PCA section). C =XTX (8.2)We note that embedding is identical to the procedure used in autoregressive modellingto generate the `input data matrix'. Similarly, we see that the covariance matrix ofembedded data is identical to the autocovariance matrixC = 26664 �xx(0) �xx(1) �xx(2) �xx(3)�xx(1) �xx(0) �xx(1) �xx(2)�xx(2) �xx(1) �xx(0) �xx(1)�xx(3) �xx(2) �xx(1) �xx(0) 37775 (8.3)99



100 Signal Processing Course, W.D. Penny, April 2000.where �xx(k) is the autocovariance at lag k.The application of PCA to embedded data (using either SVD on the embeddingmatrix or eigendecomposition on the autocovariance matrix) is known as SingularSpectrum Analysis (SSA) [18] or PCA Embedding.8.2.2 Noisy Time SeriesIf we suppose that the observed time series xn consists of a signal sn plus additivenoise en of variance �2e then xn = sn + en (8.4)If the noise is uncorrelated from sample to sample (a key assumption) then the noiseautocovariance matrix is equal to �2eI. If the signal has autocovariance matrixCs andcorresponding singular values sk then application of SVD to the observed embeddingmatrix will yield the singular values (see section 8.3 for a proof)�k = sk + �e (8.5)Thus, the biggest singular values correspond to signal plus noise and the smallest tojust noise. A plot of the singular values is known as the singular spectrum. The value�e is the noise oor. By reconstructing the time series from only those componentsabove the noise oor we can remove noise from the time series.Projections and ReconstructionsTo �nd the projection of the data onto the kth principal component we form theprojection matrix P = QTXT (8.6)where Q contains the eigenvectors of C (Q2 from SVD) and the kth row of P endsup containing the projection of the data onto the kth component. We can see thismore clearly as follows, for d = 4P = 26664 � � q1 � �� � q2 � �� � q3 � �� � q4 � � 37775 26664 x1 x2 : xN�3x2 x3 : xN�2x3 x4 : xN�1x4 x5 : xN 37775 (8.7)We can write the projection onto the kth component explicitly aspk = qTkXT (8.8)After plotting the singular spectrum and identifying the noise oor the signal can bereconstructed using only those components from the signal subspace. This is achievedby simply summing up the contributions from the �rst M chosen componentsx̂ = MXk=1pk (8.9)



Signal Processing Course, W.D. Penny, April 2000. 101which is a row vector whose nth element, x̂n contains the reconstruction of the originalsignal xn.From the section on dimensionality reduction (lecture 3) we know that the averagereconstruction error will be EM = dXk=M+1�k (8.10)where �k = �2k and we expect that this error is solely due to the noise, which hasbeen removed by SSA.The overall process of projection and reconstruction amounts to a �ltering or denoisingof the signal. Figure 8.1 shows the singular spectrum (embedding dimension d = 30)of a short section of EEG. Figure 8.2 shows the original EEG data and the SSA�ltered data using only the �rst 4 principal components.
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Figure 8.1: Singular spectrum of EEG data: A plot of �k versus k.
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Figure 8.2: (a) EEG data and (b) SSA-�ltered EEG data.



102 Signal Processing Course, W.D. Penny, April 2000.8.2.3 Embedding SinewavesA pure sinewaveIf we embed a pure sinewave with embedding dimension d = 2 then we can view thedata in the `embedding space'. Figure 8.3 shows two such embeddings; one for a lowfrequency sinewave and one for a high frequency sinewave. Each plot shows that thedata lie on a closed loop. There are two points to note.
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Figure 8.3: Embedding Sinewaves: Plots of xn+1 versus xn for sinewaves at frequenciesof (a) 13Hz and (b) 50Hz.Firstly, whilst a loop is intrinsically a 1-dimensional object (any point on the loopcan be described by a single number; how far round the loop from an agreed referencepoint) in terms on linear bases (straight lines and planes) we need two basis vectors.If the embedding took place in a higher dimension (d > 2) we would still need twobasis vectors. Therefore, if we embed a pure sinewave in d dimensions the number ofcorresponding singular values will be 2. The remaining singular values will be zero.Secondly, for the higher frequency signal we have fewer data points. This will becomerelevant when we talk about spectral estimation methods based on SVD.Multiple sinewaves in noiseWe now look at using SSA on data consisting of multiple sinusoids with additivenoise. As an example we generated data from four sinusoids of di�erent ampltiduesand additive Gaussian noise. The amplitudes and frequencies were a1 = 2; a2 =4; a3 = 3; a4 = 1 and f1 = 13; f2 = 29; f3 = 45; f4 = 6 and the standard deviation ofthe noise was �e = 2. We generated 3 seconds of data and sampled at 128Hz. We thenembedded the data in dimension d = 30. Application of SVD yielded the singularspectrum shown in Figure 8.4; we also show the singular spectrum obtained for a dataset containing just the �rst two sinewaves. The pairs of singular values constitutng thesignal are clearly visible. Figure 8.5 shows the Power Spectral Densities (computedusing Welch's modi�ed periodogram method; see earlier) of the projections onto the
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Figure 8.4: The singular spectrums for (a) p = 4 and (b) p = 2 sinewaves in additivenoise.�rst four pairs of principal components. They clearly pick out the correspondingsinewaves.8.3 Spectral estimationIf we assume that our signal consists of p complex sinusoidssk = exp(i2�fkn) (8.11)where k = 1::p then the signal autocovariance function, being the inverse Fouriertransform of the Power Spectral Density, is�xx(m) = pXk=1Pk exp(i2�fkm) (8.12)where m is the lag, Pk and fk are the power and frequency of the kth complex sinusoidand i = p�1. If the signal embedding dimension is d, where d > p, then we cancompute �xx(m) for m = 0::d � 1. The corresponding autocovariance matrix, ford = 4, for example is given byCxx = 26664 �xx(0) �xx(1) �xx(2) �xx(3)�xx(1) �xx(0) �xx(1) �xx(2)�xx(2) �xx(1) �xx(0) �xx(1)�xx(3) �xx(2) �xx(1) �xx(0) 37775 (8.13)The kth sinusoidal component of the signal at these d points is given by the d-dimensional vectorsk = [1; exp(i2�fk); exp(i4�fk); :::; exp(i2�(M � 1)fk)]T (8.14)The autocovariance matrix can now be written as followsCxx = pXk=1PksksHk (8.15)
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Figure 8.5: The Power Spectral Densities of the (a) �rst (b) second (c) third and (d)fourth pairs of projections. They clearly correspond to the original pure sinewaveswhich were, in order of amplitude, of frequencies 29, 45, 13 and 6Hz. The Fouriertransform of the data is the sum of the Fourier transforms of the projections.where H is the Hermitian transpose (take the conjugate and then the transpose).We now model our time series as signal plus noise. That isy[n] = x[n] + e[n] (8.16)where the noise has variance �2e . The autocovariance matrix of the observed timeseries is then given by Cyy = Cxx + �2eI (8.17)We now look at an eigenanalysis of Cyy where the eigenvalues are ordered �1 � �2 �::: � �M where M is the embedding dimension. The corresponding eigenvectors areqk (as usual, they are normalised). In the absence of noise, the eigenvalues �1; �2; ::; �pwill be non-zero while �p+1; �p+2; ::; �M will be zero (this is because there are only pdegrees of freedom in the data - from the p sinusoids).The signal autocovariance matrix can therefore be written asCxx = pXk=1�kqkqHk (8.18)



Signal Processing Course, W.D. Penny, April 2000. 105(this is the usual A = Q�QH eigendecomposition written as a summation) wherethe sum runs only over the �rst p components.In the presence of noise, �1; �2; ::; �p and �p+1; �p+2; ::; �M will be non-zero. Using theorthogonality property QQH = I we can write the noise autocovariance as�2eI = �2e MXk=1 qkqHk (8.19)where the sum runs over all M components.Combining the last two results allows us to write the observed autocovariance matrixas Cyy = pXk=1(�k + �2e)qkqHk + MXk=p+1�2eqkqHk (8.20)We have two sets of eigenvectors. The �rst p eigenvectors form a basis for the signalsubspace while the remaining eigenvectors form a basis for the noise subspace. Thislast name is slightly confusing as the noise also appears in the signal subspace; thesignal, however, does not appear in the noise subspace. In fact, the signal is orthogonalto the eigenvectors constituting the noise subspace. This last fact can be used toestimate the frequencies in the signal.Suppose, for example, that d = p+1. This means there will be a single vector in thenoise subspace and it will be the one with the smallest eigenvalue. Now, because thesignal is orthogonal to the noise we can writesHk qp+1 = 0 (8.21)If we write the elements of qp+1 as qkp+1 then we have which can be written asdXk=1 qkp+1 exp(�i2�(k � 1)fk) = 0 (8.22)Writing zk = exp(�i2�kfk) allows the above expression to be written in terms ofa polynomial in z. The roots allow us to identify the frequencies. The amplitudescan then be found by solving the usual AR-type equation. This method of spectralestimation is known as Pisarenko's harmonic decomposition method.More generally, if we have d > p+1 (ie. p is unknown) then we can use the MultipleSignal Classi�cation (MUSIC) algorithm. This is essentially the same as Pisarenko'smethod except that the noise variance is estimated as the average of the d�p smallesteigenvalues. See Proakis [51] for more details. Figure 8.6 compares spectral estimatesfor the MUSIC algorithm versus Welch's method on synthetic data containing 5 puresinusoids and additive Gaussian noise.
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Figure 8.6: Power Spectral Density estimates from (a) MUSIC and (b) Welch's mod-i�ed periodogram.8.3.1 Model Order SelectionWax and Kailath [62] suggest the Minimum Description Length (MDL) criterion forselecting p MDL(p) = �N log G(p)A(p)!+ E(p) (8.23)where G(p) = dYk=p+1�k (8.24)A(p) = 24 1d� p dXk=p+1�k35d�pE(p) = 12p(2d� p) logNwhere d is the embedding dimension, N is the number of samples and �k are theeigenvalues. The optimal value of p can be used as a measure of signal complexity.8.3.2 Comparison of methodsKay and Marple [31] provide a comprehensive tutorial on the various spectral esti-mation methods. Pardey et. al [45] show that the AR spectral estimates are typi-cally better than those obtained from periodogram or autocovariance-based methods.Proakis and Manolakis (Chapter 12) [51] tend to agree, although for data containinga small number of sinusoids in additive noise, they advocate the MUSIC algorithmand its relatives.


