Chapter 8

Subspace Methods

8.1 Introduction

Principal Component Analysis (PCA) is applied to the analysis of time series data.
In this context we discuss measures of complexity and subspace methods for spectral
estimation.

8.2 Singular Spectrum Analysis

8.2.1 Embedding

Given a single time series z; to x we can form an embedding of dimension d by taking
length d snapshots x; = [y, 411, ..., 41 q) Of the time series. We form an embedding
matriz X with different snapshots in different rows. For d = 4 for example
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X=75. . . . (8.1)
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The normalisation factor is there to ensure that X X produces the covariance matrix
(see PCA section).
C=X'X (8.2)

We note that embedding is identical to the procedure used in autoregressive modelling
to generate the ‘input data matrix’. Similarly, we see that the covariance matrix of
embedded data is identical to the autocovariance matrix
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where o0, (k) is the autocovariance at lag k.

The application of PCA to embedded data (using either SVD on the embedding
matrix or eigendecomposition on the autocovariance matrix) is known as Singular

Spectrum Analysis (SSA) [18] or PCA Embedding.

8.2.2 Noisy Time Series

If we suppose that the observed time series x, consists of a signal s, plus additive
noise e, of variance o2 then
Ty = Sp + €n (8.4)

If the noise is uncorrelated from sample to sample (a key assumption) then the noise
autocovariance matrix is equal to o2I. If the signal has autocovariance matrix Cs and
corresponding singular values s; then application of SVD to the observed embedding
matrix will yield the singular values (see section 8.3 for a proof)

Op = Si + O¢ (85)

Thus, the biggest singular values correspond to signal plus noise and the smallest to
just noise. A plot of the singular values is known as the singular spectrum. The value
o, is the noise floor. By reconstructing the time series from only those components
above the noise floor we can remove noise from the time series.

Projections and Reconstructions

To find the projection of the data onto the kth principal component we form the
projection matrix

P=Q"x" (8.6)
where Q contains the eigenvectors of C (Q, from SVD) and the kth row of P ends

up containing the projection of the data onto the kth component. We can see this
more clearly as follows, for d = 4

- — q — - Ty X2 . TN-3
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P = 92 (8.7)
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We can write the projection onto the kth component explicitly as
P =q, X" (8.8)

After plotting the singular spectrum and identifying the noise floor the signal can be
reconstructed using only those components from the signal subspace. This is achieved
by simply summing up the contributions from the first M chosen components

M
=3 p (8.9)
k=1



which is a row vector whose nth element, z,, contains the reconstruction of the original
signal x,,.

From the section on dimensionality reduction (lecture 3) we know that the average
reconstruction error will be

Ey = Y A (8.10)

where \; = o7 and we expect that this error is solely due to the noise, which has
been removed by SSA.

The overall process of projection and reconstruction amounts to a filtering or denoising
of the signal. Figure 8.1 shows the singular spectrum (embedding dimension d = 30)
of a short section of EEG. Figure 8.2 shows the original EEG data and the SSA
filtered data using only the first 4 principal components.
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Figure 8.1: Singular spectrum of EEG data: A plot of A\ versus k.
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Figure 8.2: (a) EEG data and (b) SSA-filtered EEG data.



8.2.3 Embedding Sinewaves
A pure sinewave

If we embed a pure sinewave with embedding dimension d = 2 then we can view the
data in the ‘embedding space’. Figure 8.3 shows two such embeddings; one for a low
frequency sinewave and one for a high frequency sinewave. Each plot shows that the
data lie on a closed loop. There are two points to note.
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Figure 8.3: Embedding Sinewaves: Plots of x,, .1 versus x, for sinewaves at frequencies

of (a) 13Hz and (b) 50Hz.

Firstly, whilst a loop is intrinsically a 1-dimensional object (any point on the loop
can be described by a single number; how far round the loop from an agreed reference
point) in terms on linear bases (straight lines and planes) we need two basis vectors.
If the embedding took place in a higher dimension (d > 2) we would still need two
basis vectors. Therefore, if we embed a pure sinewave in d dimensions the number of
corresponding singular values will be 2. The remaining singular values will be zero.

Secondly, for the higher frequency signal we have fewer data points. This will become
relevant when we talk about spectral estimation methods based on SVD.

Multiple sinewaves in noise

We now look at using SSA on data consisting of multiple sinusoids with additive
noise. As an example we generated data from four sinusoids of different ampltidues
and additive Gaussian noise. The amplitudes and frequencies were a; = 2,ay =
4,a3 = 3,a4 = 1 and f; = 13, fo = 29, f3 = 45, f4 = 6 and the standard deviation of
the noise was 0, = 2. We generated 3 seconds of data and sampled at 128Hz. We then
embedded the data in dimension d = 30. Application of SVD yielded the singular
spectrum shown in Figure 8.4; we also show the singular spectrum obtained for a data
set containing just the first two sinewaves. The pairs of singular values constitutng the
signal are clearly visible. Figure 8.5 shows the Power Spectral Densities (computed
using Welch’s modified periodogram method; see earlier) of the projections onto the
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Figure 8.4: The singular spectrums for (a) p =4 and (b) p = 2 sinewaves in additive
noise.

first four pairs of principal components. They clearly pick out the corresponding
sinewaves.

8.3 Spectral estimation

If we assume that our signal consists of p complex sinusoids
sk = exp(i27 fxn) (8.11)

where k& = 1..p then the signal autocovariance function, being the inverse Fourier
transform of the Power Spectral Density, is

p
Ozz(m) = Z Py exp(i2m frym) (8.12)
k=1
where m is the lag, Py and f; are the power and frequency of the kth complex sinusoid
and ¢ = y/—1. If the signal embedding dimension is d, where d > p, then we can
compute o,,(m) for m = 0..d — 1. The corresponding autocovariance matrix, for
d = 4, for example is given by

TEEE
Coe = | 5 (2) omll) om(0) omll) (8.13)
022(3) 022(2) 0p2(1) 042(0)

-+

The kth sinusoidal component of the signal at
dimensional vector

sp = [1,exp(i27 fi ), exp (47 fy), ..., exp(i27 (M — 1) f)]* (8.14)

The autocovariance matrix can now be written as follows

hese d points is given by the d-

p
Coo =Y Pisysy (8.15)
k=1
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Figure 8.5: The Power Spectral Densities of the (a) first (b) second (c) third and (d)
fourth pairs of projections. They clearly correspond to the original pure sinewaves
which were, in order of amplitude, of frequencies 29, 45, 13 and 6Hz. The Fourier
transform of the data is the sum of the Fourier transforms of the projections.

where H is the Hermitian transpose (take the conjugate and then the transpose).

We now model our time series as signal plus noise. That is

yln] = z[n] + e[n] (8.16)

where the noise has variance o?. The autocovariance matrix of the observed time
series is then given by

Cy =Cy+0-1 (8.17)

We now look at an eigenanalysis of C\, where the eigenvalues are ordered A\; > Ay >
... > Ay where M is the embedding dimension. The corresponding eigenvectors are
q;, (as usual, they are normalised). In the absence of noise, the eigenvalues Ay, Ay, .., A,
will be non-zero while A\,1, A\y4o, .., Ay will be zero (this is because there are only p
degrees of freedom in the data - from the p sinusoids).

The signal autocovariance matrix can therefore be written as

p
Coo = Maay (8.18)
k=1



(this is the usual A = QAQ" eigendecomposition written as a summation) where
the sum runs only over the first p components.

In the presence of noise, A1, Ag, .., Ay and A, 41, Apto, .., Aar will be non-zero. Using the
orthogonality property QQ = I we can write the noise autocovariance as

M
ol =0y q.qy (8.19)

k=1

where the sum runs over all M components.

Combining the last two results allows us to write the observed autocovariance matrix
as

p
=Y (A +od)argi + Z ol qray (8.20)
k=1 k=p+1

We have two sets of eigenvectors. The first p eigenvectors form a basis for the signal
subspace while the remaining eigenvectors form a basis for the noise subspace. This
last name is slightly confusing as the noise also appears in the signal subspace; the
stgnal, however, does not appear in the noise subspace. In fact, the signal is orthogonal
to the eigenvectors constituting the noise subspace. This last fact can be used to
estimate the frequencies in the signal.

Suppose, for example, that d = p+ 1. This means there will be a single vector in the
noise subspace and it will be the one with the smallest eigenvalue. Now, because the
signal is orthogonal to the noise we can write

51/, =0 (s.21)

If we write the elements of g, as q]’,fﬂ then we have which can be written as

d
> Gy exp(—i2m(k — 1) fx) =0 (8.22)
P

Writing 2, = exp(—i2nkfi) allows the above expression to be written in terms of
a polynomial in z. The roots allow us to identify the frequencies. The amplitudes
can then be found by solving the usual AR-type equation. This method of spectral
estimation is known as Pisarenko’s harmonic decomposition method.

More generally, if we have d > p+ 1 (ie. p is unknown) then we can use the Multiple
Signal Classification (MUSIC) algorithm. This is essentially the same as Pisarenko’s
method except that the noise variance is estimated as the average of the d —p smallest
eigenvalues. See Proakis [51] for more details. Figure 8.6 compares spectral estimates
for the MUSIC algorithm versus Welch’s method on synthetic data containing 5 pure
sinusoids and additive Gaussian noise.
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Figure 8.6: Power Spectral Density estimates from (a) MUSIC and (b) Welch’s mod-
ified periodogram.

8.3.1 Model Order Selection

Wax and Kailath [62] suggest the Minimum Description Length (MDL) criterion for
selecting p

MDL(p) = —Nlog (%) + E(p) (8.23)
where
6w) = 11 A (5.24)
1 d o
Alp) = [ﬂ k_z: )\k]

1
E(p) = 3p(2d—p)logN
where d is the embedding dimension, N is the number of samples and )\ are the
eigenvalues. The optimal value of p can be used as a measure of signal complexity.

8.3.2 Comparison of methods

Kay and Marple [31] provide a comprehensive tutorial on the various spectral esti-
mation methods. Pardey et. al [45] show that the AR spectral estimates are typi-
cally better than those obtained from periodogram or autocovariance-based methods.
Proakis and Manolakis (Chapter 12) [51] tend to agree, although for data containing
a small number of sinusoids in additive noise, they advocate the MUSIC algorithm
and its relatives.



