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Importance Sampling

Importance sampling is a generic method for computing the expectation of a function
when samples of that function cannot be drawn directly [1]. For example, the
expectation of a function a(w) over the density f(w)/Zf is defined as

ā =

∫
a(w)

f(w)

Zf
dw (1)

Multipling the integrand top and bottom by a ‘proposal’ density g(w)/Zg and
re-arranging gives

ā =
Zg

Zf

∫
v(w)a(w)

g(w)

Zg
dw (2)

where the importance weight v(w) = f(w)/g(w). A Monte Carlo estimate is given by

ā =
Zg

Zf

1

I

I∑
i=1

v(wi)a(wi) (3)

where the samples wi are drawn from the proposal. We can see that

v̄ =
1

I

∑
i

v(wi) (4)

=
Zf

Zg

Hence
∑

i v(i) = IZf/Zg. We can therefore write

ā =

∑
i v(wi)a(wi)∑

i v(wi)
(5)

Model Evidence

By letting a(w) = p(y|w,m) and f(w) = p(w) we have

a(w) =

∫
p(y|w,m)p(w)dw (6)

= p(y|m)
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An importance sampling estimate of the model evidence is therefore given by

pIS(y|m) =

∑I
i=1 v

(i)p(y|wi,m)∑I
i=1 v

(i)
(7)

v(i) =
p(wi|m)

q(wi|m)

where q is known as an importance or approximating density (previously g/Zg), wi are
samples from q, and v(i) are referred to as importance weights. Different choices for q
give rise to different IS approximations to the model evidence.

The simplest choice is the prior density, q(w|m) = p(w|m), which gives rise to the
Prior Arithmetic Mean

pPAM (y|m) =
1

I

I∑
i=1

p(y|wi,m) (8)

This approximation can of course be motivated from a simple Monte Carlo
approximation to the evidence integral. A problem with this estimate, however, is that
most samples from the prior will have low likelihood. A large number of samples will
therefore be required to ensure that high likelihood regions of parameter space will be
included in the average. If this does not occur then the model evidence will be
under-estimated.

A second choice is the posterior density, q(w|m) = p(w|y,m). Application of Bayes
rule to the numerator and denominator of equation 7 then leads to the expression for
the Posterior Harmonic Mean

pPHM (y|m) =

[
1

I

I∑
i=1

1

p(y|wi,m)

]−1

(9)

A problem with the PHM is that the largest contributions come from low likelihood
samples which results in a high-variance estimator. In applications to phylogenetic
networks, the PHM has been shown to overestimate the model evidence [2].

A third possibility which we explore in this paper is pISV L which uses equation 7
with a proposal density given by the posterior from VL optimisation. Being a Gaussian
this is straightforward to sample from and the importance weights are given by the ratio
of the probability of the sample under the prior versus under the VL posterior.

Reverse Annealing

By inverting the equation for the model evidence we have

1

p(y|m)
=

Z1

ZJ
(10)

=
ZJ−1

ZJ
...
Z2

Z3
...
Z1

Z2

=

J−1∏
j=1

1

rj

For J = 2 temperatures β2 = 1, β1 = 0 we get

1

p(y|m)
=

1

p(y|w,m)
(11)
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Averaging over multiple trajectories gives

1

p(y|m)
=

1

I

I∑
i=1

1

p(y|wi,m)
(12)

which shows that the PHM approximation to the model evidence is a special case of AIS
with a reverse annealing schedule and only J = 2 temperatures. Importance weights for
reverse annealing are given by

v(i) =
fJ−1(wJ−1)

fJ(wJ−1)
...
f2(w2)

f3(w2)

f1(w1)

f2(w1)
(13)

and a series of samples wJ , wJ−1, ...w2, w1 are created by starting with wJ from forward
annealing, and generating the others sequentially using LMC.

Importance Weights

To derive the importance weights for AIS we consider the forward and backward joint
densities over the whole trajectory. The backward density constitutes our target f and
the forward constitutes our proposal g. If the importance weights are chosen to correct
for discrepancies between them, then expectations based on w1, ..., wJ will be correct. If
expectations over the joint density are correct then so will be those over any element of
the joint. Thus wJ will be a sample from the posterior density. The density of the
backward sequence is

f(w1, ..., wJ) = fJ(wJ)T̃J−1(wJ−1|wJ)...T̃1(w1|w2) (14)

where the backward transition kernel is related to the forward as

T̃j(wj |wj+1) = Tj(wj+1|wj)
fj(wj)

fj(wj+1)
(15)

We can therefore write

f(w1, ..., wJ) =
fJ(wJ)

fJ−1(wJ)
...
f2(w2)

f1(w2)
f1(w1)

J−1∏
j=1

Tj(wj+1|wj) (16)

The density of the forward sequence is

g(w1, ..., wJ) = f0(w1)

J−1∏
j=1

Tj(wj+1|wj) (17)

Hence the importance weights are given by

v =
f(w1, ..., wJ)

g(w1, ..., wJ)
(18)

which is equal to

v =
f1(w1)

f0(w1)

f2(w2)

f1(w2)
...

fJ(wJ)

fJ−1(wJ)
(19)

Because the mean importance weight is equal to Zf/Zg (from equation 4), then if f0 is
the prior and fJ is the unnormalised posterior, the mean importance weight is also
equal to the model evidence [3].
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