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EVIEWS

ew Approaches for Exploring Anatomical and
unctional Connectivity in the Human Brain

arender Ramnani, Timothy E.J. Behrens, Will Penny, and Paul M. Matthews

nformation processing in the primate brain is based on the complementary principles of modular and distributed information
rocessing. The former emphasizes the specialization of functions within different brain areas. The latter emphasizes the massively
arallel nature of brain networks and the fact that function also emerges from the flow of information between brain areas. The
ocalization of function to specific brain areas (“functional segregation”) is the commonest approach to investigating function;
owever, an emerging, complementary approach (“functional integration”) describes function in terms of the information flow across
etworks of areas. Here, we highlight recent advances in neuroimaging methodology that have made it possible to investigate the
natomical architecture of networks in the living human brain with diffusion tensor imaging (DTI). We also highlight recent thinking
n the ways in which functional imaging can be used to characterize information transmission across networks in the human brain
functional and effective connectivity).
ey Words: Diffusion, magnetic resonance imaging, functional
onnectivity, human

major challenge for neuroscience is to understand brain
function in terms of connectional anatomy and the dy-
namic flow of information across neuronal networks. In

onhuman primates, synaptic connectivity between brain re-
ions can be established by the injection of tracers into target
rain areas and observation of the patterns of transport of tracers
n the brain postmortem (see Ramnani and Miall [2001] for a
escription of recent advances; Kobbert et al 2000). Such meth-
ds can even identify connectivity between individual synapses,
ut their invasiveness makes them unsuitable for use in humans.
agnetic resonance imaging (MRI) now offers an entirely non-

nvasive, alternative approach. In white matter, water diffusion is
ighly directional (“anisotropic”), with preferential diffusion
long the long axis of fibre tracts. With the application of large
agnetic field gradients during image acquisition, MR images

an be sensitized to the diffusion of water molecules within the
oxel, and from these images we can compute the local direction
f greatest diffusion. With these principal diffusion directions
PDD), the organization of major fibre tracts can be mapped. The
esolution of these methods is still limited by the inherently low
ignal/noise ratio of MRI, and the methods cannot achieve the
evels of spatial resolution of conventional anatomical tracer
ethods that can establish synaptic connectivity. For example,

ypical diffusion-weighted images used for tractography might
ave a voxel resolution on the order of 2.5 � 2.5 � 2.5 mm3,
hereas conventional tract-tracing methods can track the pro-

ections of single axons (with spatial resolution measured in
icrometers). Furthermore, a major limitation of these methods

s that they do not distinguish between efferent and afferent
rojections. Nonetheless, data are easily acquired from individ-
al subjects, and the analysis of tracts across the brain can
roceed relatively quickly. We will describe selected recent
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advances in this field and give examples of how they can be used
to determine aspects of the organization of the human brain.

A second, complementary approach is concerned with estab-
lishing the ways in which information is transmitted and inte-
grated across brain networks. These are dynamic, context-
dependent processes, in which variations in task demands lead
to the preferential recruitment of some networks over others.
Methods for analysis of these processes are based on the premise
that functionally interacting regions will show correlated patterns
of activity. Thus, simultaneously recording the activities of two
groups of neurons in an animal preparation allows testing for
conditions under which they become functionally coupled
(Scannell et al 1995; Young et al 1994). The advantage of
functional neuroimaging methods is that they can they can be
used to detect activity not just in a limited set of areas but across
the entire brain simultaneously. This makes it possible to exam-
ine the statistical relationships between the activities of not just
two but of several areas across the brain. We will describe
exciting new strategies for use of functional MRI (fMRI) data in
the analysis of functional connectivity in the human brain. The
review of diffusion tractography and functional mapping to-
gether highlights the possibility that future strategies for under-
standing interactions between regions of the human brain will
benefit from integrating anatomically informed models of func-
tional interactions.

Diffusion Tractography: Exploring the Connectional
Architecture of the Human Brain

Recent advances in diffusion-weighted imaging and its deriv-
ative, diffusion tensor imaging (DTI), have brought to light the
possibility of in vivo explorations of anatomical connectivity in
the human brain. Magnetic resonance diffusion-weighted imag-
ing sensitizes the nuclear MR signal to the random motion of
water molecules along a single diffusion-encoding direction (Le
Bihan 2003; Stejskal and Tanner 1965). By taking measurements
along many such directions, it is possible to characterize the
mean diffusion properties within a voxel. Diffusion tensor imag-
ing then makes the assumption that this local diffusion might be
explained by a three-dimensional Gaussian process and fits the
diffusion tensor (Basser et al 1994) as its covariance matrix at
each voxel. This tensor might be represented by a diffusion
ellipsoid and, if the assumption of Gaussian diffusion holds true,
the principal axis of this ellipsoid corresponds to the direction of
greatest diffusion, or principal diffusion direction (PDD), and its
BIOL PSYCHIATRY 2004;��:���–���
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rolateness or anisotropy corresponds to the degree to which
iffusion is preferred along this direction over other directions.

In tissue with a high degree of directional organization,
iffusion is more hindered in some directions than others (see Le
ihan 2003 for a recent review). For example, in white matter,

he PDD corresponds well with the dominant orientation of
ibres within the voxel (Beaulieu and Allen 1994). Therefore, by
isualizing the field of PDDs measured by DTI we can estimate
he local orientation of major white matter tracts at each voxel
Figure 1). In fact, the directional patterns of vector fields
isplayed graphically are so compelling that it is tempting to
ake specific inferences of the spatial trajectories of white matter

racts from them.
This process is based on two implicit assumptions. First, we

ssume that the underlying vector field along the pathways is
smoother” than the resolution of the diffusion-weighted image
i.e., that the fibre architecture in every voxel is well-represented
y a single vector, and if we followed the true PDD, we would
onfidently follow the tract). Second, we assume the measured
DD field to be a faithful representation of the true PDD field
i.e., that noise has a negligible effect on the measured PDD).

In the case of a voxel in which fibre tracts fork into two
athways, a single vector might show the mean direction instead
f describing the true direction of either fibre. Nonetheless,
o-called “streamlining algorithms” (Basser et al 2000; Conturo et
l 1999; Mori et al 1999) have been highly successful in recon-
tructing major fibre systems in the deep white matter (Figure 2;
atani et al 2002; Stieltjes et al 2001). There is a close correspon-
ence between in vivo DTI-based reconstructions and informa-
ion from postmortem studies; however, these approaches also
ave limitations. For example, they are only able to define paths
hen diffusion anisotropy is high. So, whereas large deep white
atter paths are well-defined, pathways toward the neocortex,
here there can be considerable fibre divergence, and hence

igure 1. Local principal diffusion directions (discrete red lines) overlaid on
ractional anisotropy in a typical diffusion-weighted image. Section shown
s an axial slice through the splenium of the corpus callosum.
ww.elsevier.com/locate/biopsych
low diffusion anisotropy, are not. Another limitation is that
DTI-based reconstructions express results qualitatively and do
not quantitatively measure the strength or confidence in the
pathways described, which makes between-subject comparisons
reliant on qualitative analyses.

Recent work has started to tackle the assumptions discussed
above. The first assumption is a relatively difficult one to address.
The voxel resolution in diffusion-weighted images is orders of
magnitude greater than the diameter of an axon. As we seek to
identify increasingly finer pathways, it will inevitably be the case
that some areas are poorly described by Gaussian diffusion,
because such areas might be poorly described in terms of a single
dominant fibre direction. This topic is the focus of much current
research. For example, Tuch et al (2003) propose techniques for
recovering arbitrarily complex distributions on diffusion within
each voxel. This allows the investigators to resolve areas of
complex fibre structure, such as crossing fibres. Figure 3 is a
typical example of the result of q-ball diffusion imaging in areas
with complex fibre architecture, showing the potential for resolv-
ing more complex fibre structure within a voxel. Note the
multiple lobes on the distributions, for example at the crossing of
corona radiata and superior longitudinal fasciculus.

The second assumption is easier to tackle. By taking repeated
measurements along the same diffusion-encoding directions and
“bootstrapping” these data to create many DTI data sets, Jones
(2003) was able to quantify the uncertainty in the measured PDD

Figure 2. (A) In vivo diffusion tensor imaging tractography in the fibres
around the human brainstem and cerebellar peduncles. (B) Drawing from
postmortem dissection of the same fibre systems. In both A and B, the
cortico-spinal tract is shown in red, the medial lemniscus in blue, the inferior
cerebellar peduncle in green, and the superior cerebellar peduncle in pink.
A and B are adapted from Stieltjes et al 2001 with permission from Elsevier.
(C) In vivo reconstruction of the human callosal system (adapted from
Catani et al 2002 with permission from Elsevier).
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ield. Uncertainty is typically low in deep white matter fibres,
hus explaining the reproducibility of streamlining results in
hese areas; however, uncertainty is high in areas with geomet-
ically complex structure (such as crossing fibres). Behrens et al
2003a) propose a method for estimating this uncertainty from a
ingle data set and propagating this local uncertainty on PDD
hrough to a global probability density function (PDF) on the
ecovered connecting streamlines. Thus, pathways seeded in a
iven location might encounter regions of high uncertainty as
hey approach their targets but be able to progress into target
reas, with the PDF spreading spatially to account for the
ncertainty earlier in the pathway. This is illustrated in Figure 4A,

igure 4. (A–C) Probabilistic tractography between thalamus and cortex
refrontal cortex and temporal lobe. (B) Anatomically defined cortical ma
robabilistic tractography (see text) was run from each seed voxel in thalam
ighest probability of connection. Inset: schematic of thalamus with (ove
onnections within each thalamic nuclear cluster. (D–F) Probabilistic tracto
hrough the cerebral peduncle, parcellated according to the highest probab
l 2003a.
which depicts thalamo-cortical pathways (note the broadening of
PDFs in the approach to the cortex; see figure legend for details).

An important advantage in computing a PDF on the location
of the pathway is that it is possible to express a level of
confidence in the resulting projection. Instead of discretizing the
PDF on a voxel-by-voxel basis, Behrens et al (2003b) computed
the probability of projection between seed points in the thalamus
and each of seven anatomically defined cortical masks (Figure
4B). Seeds were classified according to the masked cortical
region with which they had the greatest probability of connec-
tion (Figure 4C). Figure 4C (inset) shows a schematic diagram of
the thalamus subdivided into histologically defined nuclei. Color

Figure 3. Q-ball diffusion imaging in the macaque
monkey brain reveals fibre complexity within a
voxel. Normalized orientational density functions
are shown at each voxel. (A) A single coronal slice
from macaque brain. (B) Detail of an area of cross-
ing fibres in A (intersection of the superior longitu-
dinal fasciculus, the corona radiata, and the corpus
callosum). Image courtesy of D. Tuch.

robabilistic connectivity distribution from medio-dorsal thalamus to the
) Axial section through thalamus showing result of connectivity analysis.

nd the seed voxel was labeled according to the cortical zone in B with the
in color) predictions from the monkey literature of the dominant cortical
y between cerebral peduncle and cortex. Axial (D) and coronal (E) section
f connection from cortical zones defined in F. A–C adapted from Behrens et
. (A) P
sks. (C

us, a
rlaid
graph
ility o
www.elsevier.com/locate/biopsych
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verlays represent predictions from the monkey literature of the
ominant cortical connection of each nuclear cluster. Figure 4C
background image) shows the result of classifying seed voxels
n the thalamus to the cortical area with the highest probability of
onnection. The authors examined the probability values of
onnections between seed voxels and target areas and found
reas in the thalamus with a high probability of a connection to
ore than one cortical mask and areas in which connection
robability is small with all cortical masks.

Establishing the validity of diffusion-based fibre tracking
ethods is an important challenge, which can be accomplished
y evaluating both between-subject reproducibility and by com-
aring results with those from conventional tract-tracing methods

n the same brain. The former confers the advantage that
etween-subject analyses can be quantitative, but it might be
omplicated by the complexities associated with the spatial
arping of imaging data from several cases into a common
natomical frame of reference (Xu et al 2003); deep white matter
ractography often relies on qualitative comparisons between
ubjects. The latter is a particularly powerful approach to valida-
ion: nonhuman primate models might be used to demonstrate
hat DTI and conventional tract-tracing methods reveal common
natomical architecture when both methods are applied to the
ame brains. It was recently reported that the uptake of manga-
ese through fibre tracts can be detected with MRI (Pautler et al
998) and can therefore potentially be used as an anatomical
racer. Saleem et al (2002) reported that this method yields
rojection patterns that are comparable with those that result
rom the use of conventional tracers and histologic methods. The
eliability of manganese-based methods to establish projections
uggests that it should be used to validate DTI.

With increasing confidence in the methods, results can be
nterpreted in ways that provide novel anatomical information. In
reliminary work, Ramnani and colleagues (unpublished data)
pplied the same methods to study the topography of the
ortico-cerebellar system in the cerebral peduncles, which is part
f the controversial debate on the cognitive functions of the
erebellum. This work confirmed that rostro-caudal gradients in
he cerebral cortex are represented by medio-laterally organized
ortico-cerebellar fibre tracts in the ipsilateral cerebral peduncles
See Figure 4D–F). The representation of fibres from the prefron-
al cortex was very much larger than expected, which suggests an
mportant role for the human cerebellum in processing informa-
ion from the prefrontal cortex. The large differences in the
euroanatomical organization of this pathway in macaques and
umans suggest that inferences about human neuroanatomy that
re drawn on the basis of neuroanatomical studies in nonhuman
rimates might often be misleading. Diffusion tractography
romises to play an increasingly important role in our efforts to
nderstand the anatomical architecture of the human brain and
ts relation to that of other species.

unctional and Effective Connectivity: Exploring
odels of Information Flow Through Networks

The functional mapping of different brain regions is the
rimary approach to the analysis of functional imaging data.
lassic examples include the use of positron emission tomogra-
hy (PET) by Zeki et al (1991) to localize color and motion
enters of the human visual cortex (V4 and V5, respectively).
ore recently, these analyses have been augmented by func-

ional integration analyses that describe how functionally spe-
ialized regions interact with each other. This can be thought of
ww.elsevier.com/locate/biopsych
as the functional mapping of different brain pathways or net-
works. A recent example is the study by Buchel et al (1999), who
found that the success with which a subject learned an object–
location association task was correlated with the coupling be-
tween regions in the dorsal and ventral visual streams (Unger-
leider and Mishkin 1982).

Functional Connectivity
Early analyses of functional integration used principal com-

ponent analysis (PCA) to decompose neuroimaging data into a
set of modes that are mutually uncorrelated, both spatially and
temporally. The modes are also ordered according to the amount
of variance they explain. By comparing the temporal expression
of the first few modes with the variation in experimental task, a
distributed functional system associated with that task can be
identified (Friston et al 1993). A more sophisticated use of PCA
occurs in the context of generalized eigenimage analysis (Friston
1997), in which the principal component is found that is maxi-
mally expressed in one experimental condition/population and
minimally expressed in another (e.g., control vs. patient groups).
More recently, independent component analysis (ICA) has been
used to identify modes describing activity in a sparsely distrib-
uted network (McKeown et al 1998). Such PCA/ICA-based
methods are referred to as analyses of functional connectivity,
because they are data-driven transform methods that make no
assumptions about the underlying biology. They are therefore of
greatest practical benefit when it is not known which regions are
involved in a given task and/or what is the underlying structural
connectivity. In contrast, analyses of “effective connectivity”
(described below) are based on statistical models that make
anatomically motivated assumptions (e.g., knowledge of struc-
tural connectivity) and restrict their inferences to networks
comprising a number of preselected regions. These analyses are
hypothesis-driven rather than data-driven and are most applica-
ble when one has knowledge of the relevant functional areas
(e.g., from analyses of functional specialization). Detailed discus-
sions of both approaches are found in Frackowiak et al (2003).

Structural Equation Modeling
Structural equation models (SEMs) were developed in the

field of econometrics and were first applied to neuroimaging
data by McIntosh and Gonzalez-Lima (1994). They comprise a set
of regions and a set of directed connections. Importantly, a
causal semantics is ascribed to these connections, whereby an
arrow from A to B means that A causes B. Causal relationships
are thus not inferred from the data but are assumed a priori (see
Figure 5).

An SEM with particular connection strengths implies a partic-
ular set of instantaneous correlations between regions. One can
therefore set the connection strengths so as to minimize the
discrepancy between the observed and implied correlations and
thereby fit a model to data.

If, for example, one partitions a given fMRI data set into those
scans obtained under two different levels of an experimental
factor, then one can attribute differences in connectivity to that
factor and so conclude that a pathway has been activated.
Structural equation models have, to date, been the most widely
used model for connectivity analyses in neuroimaging (see
Goncalves and Hull 2003), and we envisage that this will remain
the case for experiments in which PET data are used.

There are, however, two major drawbacks to SEM. First,
because SEM only makes use of information in correlation
matrices, it is only possible to specify networks with a limited
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umber of connections. Such sparse structures that neglect, for
xample, reciprocal connections between regions are often
iologically implausible and might result in poor model fits.
econd, SEMs do not make use of temporal information—if the
ime indexes of the data were randomly permuted, SEM would
ive the same results.

ultivariate Autoregressive Modeling
To overcome these difficulties, Harrison et al (2003) have

roposed the use of multivariate autoregressive (MAR) models
or the analysis of fMRI data. An autoregressive approach is used
o characterize structure in a time series, whereby the current
alue of a time series is modeled as a weighted linear sum of
revious values. Multivariate autoregressive models extend this
pproach to multiple time series, so that the vector of current
alues of all regions is modeled as a linear sum of previous vector
alues. The optimal number of preceding time points can be
ound with Bayesian model order selection (see Figure 6).

In a MAR model, the dependencies between time points and
etween regions are characterized by a matrix of weighting
alues. Estimation of these weights is a noniterative linear fitting
rocess. Thus, estimation is fast, which opens up the possibility
f readily comparing connectivity models comprising different
egions and connectivity patterns.

The parameters of a MAR model can be used to compute a
umber of further quantities, each of which can be used to describe
etwork connectivity. These include coherences (correlation at
articular frequencies), partial coherences (the coherence between
wo time series after the effects of others have been taken into

igure 6. Multivariate autoregressive (MAR) mod-
ls posit a set of causal relationships between vari-
bles as shown, for example, in the left panel. The
elf-connections highlight the fact that activity in
ach region is modeled as an autoregressive pro-
ess. The right panel shows a set of functional mag-
etic resonance imaging (fMRI) time series in which

he superimposed wide rectangle indicates that
AR models take into account the ongoing corre-

ations, that is, the correlation between regions at
he same and neighboring time points. Instanta-
eous activity is the result of random fluctuations,

ocal dynamics, and connections between regions.
hanges in connectivity can be attributed to exper-

mental manipulation by partitioning the data set.
account), phase relationships (the lag between two signals at a
given frequency), and Granger causality (the dependence of region
A on region B, as assessed by comparing two MAR models, one
with the A-to-B connection and one without).

By partitioning an fMRI data set into different levels of a factor,
one can then infer that pathways have been activated or that, for
example, Granger causality between regions has changed. Multivar-
iate autoregressive models are only beginning to be applied in fMRI
but have a history of application in electroencephalography (EEG)/
magnetoencephalography (Bressler and Scott Kelso 2001).

Dynamic Causal Modeling
Whereas SEM and MAR models were developed in other areas

of science, dynamic causal modeling (DCM) (Friston et al 2003)
has been specifically designed for the analysis of functional
imaging data. Dynamic causal modeling posits a causal model,
whereby neuronal activity in a given region causes changes in
neuronal activity in other regions, via interregional connections,
and in its own activity, via self-connections (see Figure 7). The
neuronal activity in each region then gives rise to changes in
blood volume, flow, and deoxyhemoglobin content. These then
determine the blood oxygen level–dependent signal that is
measured with fMRI. In DCM, these hemodynamic relationships
are quantified by the Balloon model (Friston et al 2003).

Thus, DCM models neuronal connectivity, whereas SEM and
MAR model correlations at the level of observed fMRI time series.
Dynamic causal models are able to work at the neuronal level
because they use a “forward model” (with hemodynamic parame-
ters), relating neuronal activity to fMRI activity, and this model is

Figure 5. Structural equation models (SEMs) posit a
set of causal relationships between variables. These
can be shown graphically, for example, by the net-
work in the left panel. The right panel shows a set of
functional magnetic resonance imaging (fMRI) time
series in which the superimposed narrow rectangle
indicates that SEMs model the instantaneous corre-
lations, that is, the correlation between regions at
the same time point. Instantaneous activity is as-
sumed to be the result of random fluctuations (i.e.,
activity that cannot be directly attributed to known
experimental manipulation) and connections be-
tween regions. Changes in connectivity can be at-
tributed to experimental manipulation by parti-
tioning the data set.
www.elsevier.com/locate/biopsych
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nverted during the model-fitting process. Another important dis-
inction is that DCM explicitly models the effect of experimental
anipulation on network dynamics. Mathematically, neuronal ac-

ivity is described by a bilinear differential equation, whereby
ransient responses are initiated via driving external inputs, and the
ime constants of these transients can be altered via modulatory
nputs. The strength of these driving and modulatory input connec-
ions (or “neurodynamic parameters”) can be estimated from data.

A DCM is fitted to data by tuning the neurodynamic and
emodynamic parameters so as to minimize the discrepancy be-
ween predicted and observed fMRI time series. This takes place via
n iterative nonlinear fitting process. A current limitation of DCM is
hat, because this model fitting is computationally demanding, one
ust restrict analyses to a small number of regions.
An example of an analysis with DCM is a study of whether

ategory specificity effects in infero-temporal cortex are medi-
ted by top-down or bottom-up activity (Mechelli et al 2003). We
nticipate that the DCM approach rapidly will become widely
sed because it both 1) explicitly models how experimental
anipulations cause network activity; and 2) models this activity

t a neuronal rather than hemodynamic level, a level that is most
ppropriate for understanding information flow.

A second current limitation of DCM is that neurodynamics in
ach region are characterized by a single state variable (“neuro-
al activity”). This prohibits inferences that can be meaningfully
inked to specific neurotransmitter systems, because these would
equire multiple state variables in each region that describe
ctivity in excitatory and inhibitory subpopulations. The param-
ters of such models could only be identified with DCMs that use
igh temporal resolution data, such as from EEG. The develop-
ent of such models therefore requires integration of informa-
ww.elsevier.com/locate/biopsych
tion from fMRI (to determine where activity occurs) and from
EEG (to determine when it occurs) and is an exciting area for
future research that would significantly strengthen the bridge
between data from imaging neuroscience and our understanding
of the neurobiology underlying cognitive processing.

A Multidisciplinary Approach to Understanding
Connectivity

This review has provided an overview of recently developed
methods that permit investigations of anatomical and functional
connectivity in the human brain. Although these methods have
yet to reach the peak of their sophistication, it is clear that they
have already made significant contributions to our understanding
of how the human brain operates as a collection of networks.
The same methods also promise to transform the ways in which
we think about the underlying causes of neuropsychiatric con-
ditions. For example, DTI has been useful in the identification of
connectional abnormalities in fronto-parietal and fronto-tempo-
ral circuitry in schizophrenia (Burns et al 2003; see Lim and
Helpern 2002 for a review). Investigations of functional connec-
tivity have been useful in studies of neurotransmitter systems
closely linked to schizophrenia. As a recent example, Honey et al
(2003) demonstrated that dopaminergic drugs alter the functional
connectivity between areas of the prefrontal cortex and intercon-
nected regions of the striatum and thalamus.

In future work, the combined use of DTI and functional
connectivity analyses will also serve to overcome important
limitations. Methods for examining effective connectivity (e.g.,
DCM, as described above) often require the a priori specification
of anatomical connectivity models in the system of interest, but

Figure 7. Dynamic causal modeling (DCM) models
transient dependence in neuronal signals. Neuro-
nal activity is the result of driving experimental in-
put and neuronal dynamics, and changes in con-
nectivity are directly attributable to experimental
manipulation. This figure shows that input 1, a driv-
ing input, causes activity in region C, which in turn
causes activity in regions A and B. This activity grad-
ually decays according to a neurodynamic model
that can be estimated from functional magnetic
resonance imaging (fMRI) data. Input 2, a contex-
tual input, changes the connectivity from the neu-
ronal ensembles in region C to those in region B.
This changes network activity and results in differ-
ent observed hemodynamics (note, for example,
that fMRI activity in region B is stronger and more
correlated to activity in region A when input 2 is
“high”).
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hese are inevitably inaccurate because they are derived from
onhuman primate studies, and the connectivity between areas
n the human brain is almost always unknown. The methods
escribed here offer the prospect of using DTI to specify the
natomical model to inform functional connectivity analyses, not
nly in the same species but also in the same subjects.
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