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This article proposes a Bayesian spatio-temporal model for source
reconstruction of M/EEG data. The usual two-level probabilistic
model implicit in most distributed source solutions is extended by
adding a third level which describes the temporal evolution of neuronal
current sources using time-domain General Linear Models (GLMs).
These comprise a set of temporal basis functions which are used to
describe event-related M/EEG responses. This places M/EEG analysis
in a statistical framework that is very similar to that used for PET and
fMRI. The experimental design can be coded in a design matrix, effects
of interest characterized using contrasts and inferences made using
posterior probability maps. Importantly, as is the case for single-
subject fMRI analysis, trials are treated as fixed effects and the
approach takes into account between-trial variance, allowing valid
inferences to be made on single-subject data. The proposed probabil-
istic model is efficiently inverted by using the Variational Bayes
framework under a convenient mean-field approximation (VB-GLM).
The new method is tested with biophysically realistic simulated data
and the results are compared to those obtained with traditional spatial
approaches like the popular Low Resolution Electromagnetic Tomo-
grAphy (LORETA) and minimum variance Beamformer. Finally, the
VB-GLM approach is used to analyze an EEG data set from a face
processing experiment.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

This article describes a model-based spatio-temporal deconvolu-
tion method for M/EEG source reconstruction. The underlying
forward or “generative”model incorporates two mappings. The first
specifies a time-domain General Linear Model (GLM) at each point
in source space. This relates effects of interest at each generator to
source activity at that generator. This is identical to the “mass-
univariate” approach that is widely used in the analysis of fMRI
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(Frackowiak et al., 2003). Additionally, effects of interest are
constrained to be similar at nearby generators through use of a spatial
prior. The second mapping relates source activity to sensor activity
at each time point using the usual spatial-domain lead-field matrix.

There are two potential benefits of the approach. First, as we
will show, the use of temporal (as well as spatial) priors can result
in more accurate source reconstructions. This may allow signals to
be found that cannot otherwise be detected. Second, it provides an
analysis framework for M/EEG that is very similar to that used in
PET and fMRI. The experimental design can be coded in a design
matrix, the model fitted to data, and various effects of interest can
be characterized using “contrasts” (Frackowiak et al., 2003). These
effects can then be tested for statistically using posterior probability
maps (PPMs), as described in Friston and Penny (2003).
Importantly, the model does not need to be refitted to test for
multiple experimental effects that are potentially present in any
single data set. Source parameters are estimated once only using a
spatio-temporal deconvolution rather than separately for each
temporal component of interest.

The new method is to be contrasted with approaches which
follow a single-pass serial processing strategy in which either (i)
spatial processing first proceeds to create estimates at each source
location and then temporal models are applied at these “virtual
depth electrodes” (Darvas et al., 2004; Kiebel and Friston, 2004;
Brookes et al., 2004), or (ii) time-series methods are applied in
sensor space to identify components of interest using, e.g., time
windowing (Rugg and Coles, 1995) or time–frequency estimation
(Durka et al., 2005), and source reconstructions are then based on
these components. The algorithm we propose comprises a
multiple-pass strategy in which temporal and spatial parameter
estimates are improved iteratively to provide an optimized and
mutually constrained solution.

The new algorithm is similar to existing distributed source
solutions in employing spatial priors but differs from the standard
generative models implicit in source reconstruction by having an
additional level that embodies temporal priors. The spatial prior we
use is the spatial Laplacian employed in, for example, Low
Resolution Electromagnetic Tomography (LORETA) (Pascual-
Marqui et al., 1994). This uses an L2-norm, which embodies a
belief that sources are diffuse and highly distributed. These are to be
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contrasted with priors based on L1-norms (Fuchs et al., 1999), Lp-
norms (Auranen et al., 2005), Variable Resolution Electromagnetic
Tomography (VARETA) (Valdés-Sosa et al., 2000), models with
multiple priors (Mattout et al., 2006) or models employing Bayesian
Model Averaging (BMA) (Trujillo-Barreto et al., 2004), which can
accommodate more focal sources. In this paper, we use a single
Laplacian spatial prior, as it is the simplest available and because we
want to focus on the benefit of using temporal priors in addition to
spatial priors. In the future, we envisage augmenting the approach
with more flexible spatial priors.

The use of both spatial and temporal constraints is not unique
within the source reconstruction community. Indeed, there have
been a number of approaches that also make use of temporal priors.
Baillet and Garnero (1997), in addition to considering edge-
preserving spatial priors, have proposed temporal priors that
penalize quadratic differences between neighboring time points.
Schmidt et al. (2000) have extended their dipole-like modelling
approach using a temporal correlation prior which encourages
activity at neighboring latencies to be correlated. Similarly,
Daunizeau et al. (2005) propose magnitude priors and temporal
smoothness priors based on second derivatives. Galka et al. (2004)
have proposed a spatio-temporal Kalman filtering approach which
is implemented using linear autoregressive models with neighbor-
hood relations. This work has been extended by Yamashita et al.
(2004), who have developed a “Dynamic LORETA” algorithm in
which the Kalman filtering step is approximated using a recursive
penalized least squares solution. The algorithm is, however,
computationally costly, taking several hours to estimate sources
in even low-resolution source spaces. Compared to these
approaches, our algorithm perhaps embodies stronger dynamic
constraints. However, the computational simplicity of fitting
GLMs, allied to the efficiency of our inference procedure, results
in a relatively fast algorithm. Moreover, the GLM can accom-
modate damped sinusoidal and wavelet approaches that are ideal
for modelling the transient and nonstationary responses in M/EEG.

The manuscript is organized as follows. In the Theory section,
we describe the model and relate it to the existing literature on
distributed solutions. The success of the approach rests on our ability
to characterize neuronal responses, and task-related differences in
them, using GLMs. We describe how this can be implemented for
the analysis of evoked responses and show how the model can be
inverted to produce source estimates using Variational Bayes (VB).
In the Results section, the framework is applied to simulated data
and data from an EEG study of face processing.

Methods

Notation

Bold and regular lowercase variable names denote vectors and
scalars, respectively. Bold uppercase names denote matrices with
dimensions denoted by regular uppercase names. By convention,
all vectors are assumed to be column vectors, whether it
corresponds to a row or a column of a matrix will be denoted by
using a dot (“·”) as a subscript indicating the non-singleton
dimension. That is, xi· (x·i) is a column vector containing the
elements of the ith row (column) of matrix X. In what follows, N(x;
μ, Σ) denotes a multivariate normal density over x, having mean
μ and covariance Σ. The precision of a Gaussian variate is the
inverse (co)variance. A gamma density over the scalar random
variable x is written as Ga(x;a,b). We also use ||x||2=xTx, denote
the trace operator as tr(X), use diag(x) to denote a diagonal matrix
with diagonal entries given by the vector x and the symbol ⊗ for
Kronecker’s product.

Probabilistic generative model

The aim of the M/EEG inverse problem (or source reconstruc-
tion) is to estimate the primary current density (PCD) J from
M/EEG measurements Y. If we have m=1,…,M sensors, g=1,…,G
generators, r=1,…,R trials (repetitions) and t=1,…,T time bins,
then J and Y are multivariate time series of dimensions G×RT and
M×RT, respectively. In order to keep notation simple, we will first
describe a single-trial model (R=1) and then will generalize to the
multiple-trial case.

The applications in this paper use a cortical source space in
which PCD orientations are constrained to be perpendicular to
gray/white matter interface. Each entry in J therefore corresponds
to the scalar value (magnitude and sign) of the PCD vector at
particular locations and time points. This is related to sensor
measurements by solving the forward problem (FP) of the M/EEG
that uses Maxwell’s equations governing electromagnetic fields
(Baillet et al., 2001).

Because measurements always have attached uncertainties, it is
natural to take a probabilistic approach. In this case, we are not
interested in a particular solution, but in the ensemble of possible
solutions. That is, one always starts with a probability distribution
representing a priori information, and the use of observations
narrows this distribution. The solution of the inverse problem is
not a particular model but the (posterior) probability distribution
over the model space.

Most established distributed source reconstruction or “imaging”
methods (Darvas et al., 2004) implicitly rely on the following
hierarchical model.

Ȳ ¼ KJþ E

J ¼ Z ð1Þ

in which random fluctuations E correspond to sensor noise and
source activity J is generated by random innovations Z. Here we
have assumed that the signal at the sensors has been averaged over
trials to give the ERP Ȳ. This corresponds to the two-level
probabilistic generative model (PGM)

pð ȳdtjJ;WÞ ¼j
T

t¼1
Nð ȳdt;Kjdt;W

�1Þ

pðJjαÞ ¼j
T

t¼1
Nðjdt; 0;α�1D�1Þ ð2Þ

also shown schematically in Fig. 1, where j·t and ȳ ·t are the source
and sensor column vectors at time t and Ω−1 is the sensor noise
covariance. The matrix D reflects the choice of spatial prior and α
is a spatial precision variable.

Our approach is then based on the following three-level model

Y ¼ KJþ E

JT ¼ XWþ Z

W ¼ R ð3Þ



Fig. 2. Graphical representation of the proposed probabilistic generative
model. It comprises three levels. The third level specifies a spatial prior on
the regression coefficients of the temporal GLM proposed for the primary
current density. This temporal model is specified in the second level,
whereas the first level encodes the observation equation given by the EEG
forward model.

Fig. 1. Graphical representation of the probabilistic generative model
implicit in most distributed source reconstruction methods. It comprises two
levels. The second level specifies a spatial prior on the primary current
density and the first level incorporates the observation equation given by the
EEG forward model.
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Here we have random innovations Z which are “temporal
errors,” i.e., lack of fit of the temporal model, and R which are
“spatial errors,” i.e., lack of fit of a spatial model. In this case, the
spatial models are simply zero mean Gaussians with covariances
αk
−1Dk

−1. That is, before observing data we believe that W=R, i.e.,
that the regression coefficients are given by a random variation
with zero mean and spatial regularity αk

−1Dk
−1. This belief will be

updated after observing our M/EEG data. We can regard XW as an
empirical prior on the expectation of source activity.

The above equations can be re-expressed as the probabilistic
generative model

pðYjJ;WÞ ¼j
T

t¼1
Nðydt;Kjdt;W

�1Þ ð4Þ

pðJjW;ΛÞ ¼j
T

t¼1
NðjTdt; xtdW;Λ�1Þ ð5Þ

pðWjαÞ ¼j
K

k¼1
NðwT

kd; 0;α
�1
k D�1

k Þ ð6Þ

The first level, Eq. (4), is identical to the standard model. In the
second level, however, source activity at each generator is
constrained using a T×K matrix of temporal basis functions, X.
The PGM is shown schematically in Fig. 2.

The precision of the source noise is given by Λ. In this paper,
Λ=diag(λ), where the diagonal element λg is the noise precision
at the gth generator. That is, event-related source activity is
described by the time-domain GLM and remaining source activity
will correspond to unmodelled responses. The quantity Λ−1 can
therefore be thought of as the variance of spontaneous and/or
induced activity in source space. The regression coefficients W
determine the weighting of the temporal basis functions.

The third level of the model is a spatial prior that reflects our
prior uncertainty about W. The kth row of W, wk·, is a map of
regression coefficients in source space. It provides a generator-
specific weighting of the k-th column of the design matrix, i.e., of
the k-th putative experimental effect or temporal basis function.
Each regression coefficient map is constrained by setting Dk to
correspond to the usual L2-norm spatial prior. The spatial prior that
is usually on the PCD now appears at a superordinate level.
Different choices of Dk result in different weights and different
neighborhood relations. This lends the model a higher degree of
flexibility by allowing the different effects to be assigned different
spatial priors.

The applications in this paper use Dk=D=LTL, where L is a
discrete surface Laplacian as defined by Huiskamp (1991), which
implements second-order differences on geodesic distances. The
parameter αk then controls the spatial smoothness of the kth map
wk. This is important because it allows different response
components to have different spatial characteristics, e.g., response
components with longer time scales may be more spatially diffuse
(Buzsaki and Draguhn, 2004).

The first level of the model assumes that there is Gaussian
sensor noise e·t, with zero mean and covariance Ω−1. This
covariance can be estimated from prestimulus or baseline periods
when such data are available (Sahani and Nagarajan, 2004).
Alternatively, we assume that Ω=diag(σ) where the mth element
of σ is the noise precision on the mth sensor, and provide a scheme
for estimating σm, should this be necessary. For this, we also place
conjugate Gamma priors on the precision variables σ, λ and α

pðsÞ ¼j
M

m¼1
Gaðrm; brm ; crmÞ

pðkÞ ¼j
G

g¼1
Gaðkg; bkg ; ckg Þ

pðαÞ ¼j
K

k¼1
Gaðαk ; bαk ; cαk Þ ð7Þ

This allows the inclusion of further prior information into the
source localization. For example, instead of using baseline periods
to estimate a full covariance matrixΩ−1, we could use these data to
estimate the noise variance at each sensor. This information could
then be used to set bσm and cσm, allowing noise estimates during
periods of interest to be constrained softly by those from baseline
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periods. Similarly, we may wish to enforce stronger or weaker
spatial regularization on wkU by setting bαk

and cαk appropriately.
The applications in this paper, however, use uninformative gamma
priors by setting all scale and shape parameters in (7) to 1000 and
0.001 (mean 1 and variance 1000), respectively. This means that σ,
λ and α will be estimated solely from the data Y.

In summary, the addition of the superordinate level to our
generative model induces a partitioning of source activity into
signal and noise. This empirical Bayes perspective means that the
conditional estimates of source activity J are subject to “bottom-
up” constraints provided by the data, and “top-down” predictions
from the third level of our model. We will use this heuristic later to
understand the update equations used to estimate source activity.

Temporal models

The usefulness of the present spatio-temporal approach rests on
our ability to characterize neuronal responses using GLMs.
Fortunately, there is a large literature that suggests this is possible.
The type of temporal model necessary will depend on the M/EEG
response one is interested in. These components could be (i) single
trials, (ii) evoked components (steady-state or ERPs; Rugg and
Coles, 1995) or (iii) induced components (Tallon-Baudry et al.,
1996). In this paper we focus on single trials and ERPs leaving
steady-state and induced components the subject of future
publications.

The basis functions will form columns in the GLM design
matrix, X (see Eq. (3) and Fig. 2). Basis functions could be
derived from damped sinusoids (Demiralp et al., 1998) or
principal components (Trejo and Shensa, 1999; Friston et al.,
2006) but in this paper we use a wavelet representation. That is,
given an M/EEG signal, f

f ¼
XK
k¼1

wkxk ð8Þ

where xk are wavelet basis functions and wk are wavelet
coefficients. Wavelets are derived by translating and dilating a
mother wavelet and provide a tiling of time–frequency space that
gives a balance between time and frequency resolution. The Q-
factor of a filter or basis function is defined as the central
frequency to bandwidth ratio. Wavelet bases are chosen to provide
constant Q (Unser and Aldroubi, 1996). This makes them good
models of nonstationary signals, such as ERPs and induced EEG
components (Tallon-Baudry et al., 1996). If K=T, then the
mapping f→w is referred to as a wavelet transform, and for KNT
we have an overcomplete basis set. More typically, we have K≤T.

In the ERP literature, the particular subset of basis functions
used is chosen according to the type of ERP component one wishes
to model. Popular choices are wavelets based on B-splines (Unser
and Aldroubi, 1996). In statistics, however, it is well known that an
appropriate subset of basis functions can be automatically selected
using a procedure known as “wavelet shrinkage” or “wavelet
denoising.” This relies on the property that natural signals such as
images, speech or neuronal activity can be represented using a
sparse code comprising just a few large wavelet coefficients.
Gaussian noise signals, however, produce Gaussian noise in
wavelet space. This comprises a full set of wavelet coefficients
whose size depends on the noise variance. By “shrinking” these
noise coefficients to zero using a thresholding procedure (Donoho
and Johnstone, 1994; Clyde et al., 1998), and transforming back
into signal space, one can denoise data. This amounts to defining a
temporal model. We will use this approach for the empirical work
reported in this paper. We also note that it is possible to incorporate
the wavelet shrinkage methods into the probabilistic generative
model by modifying Eq. (7). This has been implemented for
models of fMRI data with spatial wavelet priors (Flandin and
Penny, 2007). In this paper, however, wavelet shrinkage is
implemented outside of the model by using a standard thresholding
procedure (Donoho and Johnstone, 1994).

Multiple-trials model

When considering R independent trials or repetitions, our PGM
can be written as

pðỸjJ̃;WÞ ¼j
R

r¼1
j
T

t¼1
Nðyd tr;Kjdtr;W

�1Þ

pð J̃jW;ΛÞ ¼j
R

r¼1
j
T

t¼1
NðjTdtr; xrtdW;Λ�1Þ

pðWjαÞ ¼j
K

k¼1
NðwT

kd; 0;α
�1
k D�1

k Þ ð9Þ

where Ỹ (M×RT) and J̃ (G×RT) are multivariate time series
obtained by concatenating all trials of the measured ERP and the
estimated PCD, respectively; and xrtU is the K×1 vector of
regressors for the tth time bin and the rth trial. Here we have
assumed that the effect of interest W is the same in all trials. This
treats trials as fixed rather than random effects, as is the case for
standard analyses of single-subject fMRI data (Frackowiak et al.,
2003). Thus, the multiple-trial design matrix X̃ in this case is
constructed by block repeating our design matrix for a single trial

X̃ ¼ 1R � X ð10Þ
where 1R denotes a column vector of ones with length R. Note that
the multiple-trial PGM and the corresponding hierarchical model
have the same form as for the single-trial case, if we just use X= X̃
in Eq. (3), and take the index t to run over time and across trials in
Eqs. (4) and (5) (t=1,…,RT). Thus, for simplicity, we will keep the
same notation as before. In summary, multiple trials are treated by
forming concatenated data and design matrices.
Bayesian inference

To make inferences about the sources underlying M/EEG, we
need to invert our PGM to produce the posterior density p(J|Y).
This is straightforward in principle and can be achieved using
standard Bayesian methods (Gelman et al., 1995). For example,
one could use Markov Chain Monte Carlo (MCMC) to produce
samples from the posterior. This has been implemented efficiently
for dipole-like inverse solutions (Schmidt et al., 1999) in which
sources are parameterized as spheres of unknown number, extent
and location. It is, however, computationally demanding for
distributed source solutions, taking several hours for source spaces
comprising GN1000 generators (Auranen et al., 2005). In this
work we adopt the computationally efficient approximate inference
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framework called Variational Bayes (VB) (Lappalainen and
Miskin, 2000; Beal, 2003; Friston et al., 2007).

Variational Bayes framework

This is a recent development from the machine learning
community and is based on the Variational Free Energy method of
Feynman and Bogoliubov. The central quantity of interest is the
posterior distribution p(θ|Y). This implies estimation of both the
parameters and the uncertainties associated with their estimation.
Given a PGM of the data, the log-evidence or marginal likelihood
can be written as

log p Yð Þ ¼
Z

q θð Þlog p Yð Þdθ ¼
Z

q θð Þlog pðY; θÞqðθÞ
qðθÞpðθjYÞ
� �

dθ

¼ F þ KL q θð Þjjp θjYÞ� ð11Þð½
here, q(θ) is the approximate posterior. We have

F ¼
Z

q θð Þlog pðY; θÞ
qðθÞ dθ ð12Þ

which is known (to physicists) as the negative variational free
energy and

KL½q θð ÞjjpðθjYÞ� ¼
Z

q θð Þlog qðθÞ
pðθjYÞ dθ ð13Þ

is the KL divergence (Cover and Thomas, 1991) between the
approximate posterior q(θ) and the true posterior p(θ|Y).

The aim of VB learning is to maximize F and so make the
approximate posterior as close as possible to the true posterior. One
generic procedure for ensuring that the integrals in F are tractable
is to assume that the approximating density factorizes over groups
of parameters (mean-field approximation)

qðθÞ ¼ j
i
qðθiÞ ð14Þ

where θ is the ith group of parameters.
Fig. 3. Hierarchical model representing the spatio-temporal deconvolution
embodied by the VB estimator of the PCD. The estimated PCD receives
contributions from two terms: (i) a “top-down” prediction from the temporal
GLM and (ii) a “bottom-up” prediction from the spatial lead-field model,
both weighted by their respective precisions.
Approximate posteriors

For our source reconstruction model we assume the following
factorization of the approximate posterior

qðJ;W;α;l;sÞ ¼ qðJÞqðWÞqðαÞqðsÞqðlÞ ð15Þ

We also assume that the approximate posterior for the
regression coefficients factorizes over generators

qðWÞ ¼j
G

g¼1
qðwdgÞ ð16Þ

This approximation was used in the spatio-temporal model for
fMRI described in Penny et al. (2005). Because of the spatial prior
(Eq. (6)), the regression coefficients in the true posterior p(W|Y)
will clearly be correlated. Our perspective, however, is that this is
too computationally burdensome for current personal computers to
take account of. Moreover, as we shall see, updates for our
approximate factorized densities q(w·g) do encourage the approx-
imate posterior means to be similar at nearby generators, thereby
achieving the desired effect of the prior.
Now that we have defined the probabilistic model and our
factorization of the approximate posterior, we can use VB to derive
expressions for each component of the approximate posterior. We
do not present details of these derivations in this paper. Similar
derivations have been published elsewhere (Penny et al., 2005).
The following sections describe each distribution and the updates
of its sufficient statistics required to maximize the lower bound on
the model evidence, F.

Primary current density
Updates for the sources are given by

qðJÞ ¼j
T

t¼1
qðjdtÞ ð17Þ

qðjdtÞ ¼ Nðjdt ; ̂jdt; Σ̂JÞ ð18Þ

Σ̂J ¼ ðKT V̂K þ Λ̂Þ�1 ð19Þ

̂jdt ¼ Σ̂JðKT V̂ydt þ Λ̂Ŵ
T
xTtdÞ ð20Þ

where ĵ·t is the tth column of Ĵ and Ω̂ , Λ̂ and Ŵ are estimated
parameters defined in the following sections. We have not assumed
that q(J) factorizes over time, but this ‘falls out’ of the equations,
primarily because we have assumed that the additive noise E
factorizes over time (i.e., IID observation noise). Given that the
source covariance matrix does not change with time, Eq. (20) can
be rewritten in a more compact form

̂J ¼ Σ̂JðKT V̂Yþ Λ̂Ŵ
T
XT Þ ð21Þ

This expression shows that our source estimates are the result of
a spatio-temporal deconvolution. The spatial contribution to the
estimate is KTY and the temporal contribution is ŴTXT. From the
perspective of the hierarchical model, shown in Fig. 3, these are the
“bottom-up” and “top-down” predictions. Importantly, each
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prediction is weighted by its relative precision. Moreover, the
parameters controlling the relative precisions Ω̂ and Λ̂ are
estimated from the data. This means that our source estimates
derive from an automatically regularized spatio-temporal decon-
volution. This property is shared by the spatio-temporal model for
fMRI, described in Penny et al. (2005).

An important characteristic of the source update in Eq. (21) is
that the source estimate at each time point depends on the posterior
covariance matrix between different sources, Σ̂J. This allows the
deconvolution algorithm to accommodate correlation between
sources and should be contrasted with the minimum variance
beamformer estimate (Darvas et al., 2004)

̂j
T
gd ¼ bTd gY ð22Þ
where the 1×T time series at generator g is given by projecting M/
EEG data Y onto the spatial filter b·g

T. This projection is repeated
separately for all source locations g. The spatial filter, which is
derived by assuming that different sources are uncorrelated, is
given by

bd g ¼ ðkT
d gVkd gÞ�1Vkd g ð23Þ

As a result, the beamformer is unable to localize correlated
activity (Sahani and Nagarajan, 2004). We will return to this
important issue in the Results section.

We end this section by noting that statistical inferences about
current sources are more robust than point predictions. This
property has been used to great effect with Pseudo-z beamformer
statistics (Robinson and Vrba, 1999), sLORETA (Pascual-Marqui,
2002) and VARETA (Bosch-Bayard et al., 2001) source recon-
structions, which divide current source estimates by their standard
deviations. This approach can be adopted in the current framework
as the standard deviations are readily computed from the diagonal
elements of Σ̂J. Moreover, we can threshold these statistic images
to create posterior probability maps (PPMs), as introduced by
Friston and Penny (2003).
Regression coefficients
Updates for the regression coefficients are given by

qðwdgÞ ¼ Nðwd g; ŵd g; Σ̂wd g Þ

Σ̂wd g ¼ ð ̂kgXTXþ diagðdggÞdiagð α̂ÞÞ�1

ŵd g ¼ Σ̂wg ð ̂kgXT ̂jg d þ diagð α̂ÞrgÞ ð24Þ
where α̂ is the estimated parameter defined later on, dij=[dij1,…,
dijK]

T is a K×1 vector containing the (i, j)th element of all the Dk

matrices and rg is the weighted sum of neighboring regression
coefficient estimators and is given by

rg ¼
XG

g V¼1;g Vpg

diagðdgg VÞ ŵd g V ð25Þ

The update for ŵ·g in Eq. (24) therefore indicates that the
regression coefficient estimates at a given generator regress toward
those at nearby generators. This is the desired effect of the spatial
prior and it is preserved despite the factorization in the approximate
posterior. This equation can again be thought of in terms of the
hierarchical model where the regression coefficient estimate is a
combination of a “bottom-up” prediction from the level below,
XTĵg ·, and a “top-down” prediction from the prior, rg. Again, each
contribution is weighted by its relative precision.

The update for the covariance in Eq. (24) shows that the only
off-diagonal contributions are due to the design matrix. If the
temporal basis functions are therefore chosen to be orthogonal then
this posterior covariance will be diagonal, thus making a
potentially large computational saving. One benefit of the proposed
framework, however, is that non-orthogonal bases can be
accommodated. This may allow for a more natural and compact
description of the data.

Precision of temporal models
Updates for the precision of the temporal model are given by

qðkÞ ¼j
G

g¼1
Gaðkg; b̂kg ; ̂ckg Þ

1

b̂kg
¼ 1

bkg
þ 1
2

XT
t¼1

ð ̂jgt � ŵT
d gxtdÞ2 þ ðΣ̂JÞgg þ xTtd Σ̂wdgxtd�

h

̂ckg ¼
1
2
T þ ckg

k̂g ¼ b̂kg ̂ckg ð26Þ

Where (Σ̂J)gg is the gth diagonal element of Σ̂J. In the
context of ERP analysis, these expressions amount to an estimate
of the variance of spontaneous and/or induced activity at
generator g, λ̂ g

−1 given by the squared error between the evoked
component estimate, ŵ·g

Txt·, and source estimate, ĵgt at the given
generator, averaged over time, and the other approximate
posteriors.

Precision of forward model
Updates for the precision of the sensor noise are given by

qðsÞ ¼j
M

m¼1
qðrmÞ

qðrmÞ ¼ Gað b̂rm ; ̂crmÞ

1

b̂rm
¼ 1

brm
þ 1
2

XT
t¼1

ðymt � kT
md

̂jdtÞ2 þ
1
2
kT
mdΣ̂jdtkmd

̂crm ¼ T
2
þ crm

r̂m ¼ b̂rm ̂crm ð27Þ

These expressions amount to an estimate of observation noise
variance at the mth sensor, σ̂m

−1, given by the squared error between
the forward model and sensor data, averaged over time and the
other approximate posteriors.
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Precision of spatial prior
Updates for the precision of the spatial prior are given by

qðαÞ ¼j
K

k¼1
qðαkÞ

qðαkÞ ¼ Gað b̂αk ; ̂cαk Þ

1

b̂αk

¼ 1
bαk

þ jjDkŵ
T
kdjj2 þXG

g¼1

dggkðΣ̂wd g Þkk

̂cαk ¼
G
2
þ cαk

α̂k ¼ b̂αk ̂cαk ð28Þ

where (Σ̂w·g
)kk is the kth diagonal element of Σ̂w·g

. These
expressions amount to an estimate of the “spatial noise variance”
α̂k
−1, given by the discrepancy between neighboring regression

coefficients, averaged over space and the other approximate
posteriors.

To summarize, our source reconstruction model is fitted to data
by iteratively applying the update equations until the change in the
negative free energy F, is less than some user-specified tolerance.
This procedure is summarized in the pseudo-code in Fig. 4 and will
lead to a local maximum of F (for a general discussion of
convergence issues, see Friston et al. (2007).

This amounts to a process in which sensor data is spatially
deconvolved, time-series models are fitted in source space, and
then the precisions (accuracy) of the temporal and spatial models
are estimated. This process is then iterated and results in a spatio-
temporal deconvolution in which all aspects of the model are
optimized to maximize a lower bound on the model evidence.
The algorithm can be efficiently implemented as described in
Appendix A.

Results

This section describes the application of the approach presented
here to (i) biophysically realistic simulated data and (ii) EEG from
a face-processing experiment. In all cases, we used the same sensor
and source spaces. The sensor space was defined using M=128
electrodes from the BioSemi ActiveTwo System. The source space
then consisted of a mesh of nodes (generators) corresponding to the
vertices of the triangles obtained by tessellation of the gray/white
matter interface of the realistic digital brain phantom developed at
the Montreal Neurological Institute (MNI) (Collins et al., 1998).
The tessellation comprised 12,000 triangles and G=6004 vertices.
Fig. 4. Pseudo-code for the Variational Bayes algorithm. Iterative update of
the approximate posterior components results in increasing the lower bound,
F, on the model evidence.
We used the three concentric sphere model to calculate the
electric lead field (Rush and Driscoll, 1969). The centre and radius
of the spheres were fitted to the scalp, skull and cerebral tissue of
the same brain. In what follows we refer to the spatio-temporal
approach as “VB-GLM.”

ERP simulation

We used our generative model to simulate ERP-like activity by
using the waveforms and spatial profiles shown in Fig. 5. As can
be seen, the two waveforms are temporally correlated (Corr=0.86)
with main peaks that mimic an ERP component at about t=200 ms
post-stimulus. These waveforms were derived from a neural mass
model describing activity in a distributed network of cortical areas
(David and Friston, 2003), which lends these simulations a degree
of biological plausibility. The two spatial profiles in turn consisted
of Gaussian blobs with identical maximum amplitudes of 10, and
identical full width at half maximums (FWHM) of 20 mm. The
spatial extent of the activated areas was constrained by taking a
geodesic neighborhood of 3 nodes around the centre of each
Gaussian and setting to zero the activity outside.

These temporal and spatial profiles were then used respectively
as design matrix and regression coefficients to generate data from
our model. Ten trials of sensor data were generated using signal-to-
noise ratios (SNR) of 10 and 40 at the sensor and source levels,
respectively. Here, we defined SNR as the ratio of the signal
standard deviation to noise standard deviation. Signal epochs of
512 ms were then produced with a sampling period of 4 ms, giving
a total of 5120 ms of EEG (1280 time bins).

We estimated the sources underlying the sample ERP (i) with
an overspecified temporal model that incorporated two spurious
regressors in addition to the ones used to generate the data and (ii)
with a temporal model that consisted of Battle-Lemarie wavelets
obtained by application of the wavelet shrinkage algorithm to the
first eigenvector of the simulated sensor data.

Overspecified temporal model
The four regressors that form the overspecified temporal model

for a single trial are shown in Fig. 6A. Note that Regressors 1 and 2
contain the source waveforms that were used to generate the data.
These four regressors were then concatenated to form the design
matrix that models the 10 simulated trials (Fig. 6B). It is important
to note that this design matrix is not orthogonal because the four
regressors are temporally correlated.

The model was then fitted to the data using VB-GLM. As
shown in Fig. 7, the true effects (regression coefficients) are
accurately recovered, whereas the spurious regression coefficients
are shrunk toward zero. The shrinking effect is evident when
looking at the estimated spatial precision, α̂k, for each regression
coefficient shown in the upper panel of Fig. 7. These determine
how precisely the effects are constrained around zero. A large
precisions implies a strong shrinkage toward zero. As can be seen,
the precisions corresponding to the spurious regressors are four
orders of magnitude greater than the precisions corresponding to
the true regressors. These results are a consequence of the spatial
prior and the iterative spatio-temporal deconvolution, and
demonstrate that source reconstruction with temporal priors is
robust to model mis-specification. This also shows that VB-GLM,
in contrast to, for instance, traditional beamforming approaches
(see section “VB-GLM vs. minimum variance beamformer”), is
capable of localizing temporally correlated sources.



Fig. 5. Temporal (left) and spatial (right) profiles of the biophysically realistic sources used for generating simulated data. The two waveforms incorporate a
negative component at t≈200 ms.

Fig. 6. Definition of the overspecified temporal model used for source
reconstruction of simulated data. (A) Four regressors used for constructing
the design matrix of the temporal GLM of the PCD. Regressors 1 and 2 are
the same as used for generating the data, while 3 and 4 are spurious
regressors. (B) Image of the overspecified multiple-trial design matrix. Note
that all regressors are temporally correlated.
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Additionally, note that the reconstructed effect sizes are
diminished with respect to the true ones. This could be due to
the increasing source amplitude bias with depth that is inherent to
all distributed inverse solutions (Trujillo-Barreto et al., 2004). The
bias is less in the case of Regression Coefficient 1 because the left-
frontal and left-occipital sources are closer to the sensors than the
left-temporal and right-postcentral sources in Regression Coeffi-
cient 2. These depth effects can be overcome with sparse priors
(Trujillo-Barreto et al., 2004). It is possible, however, that this bias
is not only a depth effect but it could also reflect the well-known
overconfidence problem of mean-field approximations. In our case,
this is most likely the consequence of assuming that the
approximate posterior for the regression coefficients factorizes
over generators, resulting in posterior certainties that are slightly
too high.
Wavelet temporal model
The simple example we have just described, although useful for

illustrative purposes, is of limited use because, in practice, we can
never know which are the “true” regressors.

We now describe how the temporal model can be constructed
generically using the data at hand. We first partition the sensor data
into two halves. The first five trials were used to fit the temporal
model, while the remaining five trials were used for source
reconstruction. We then extracted the first eigenvector of the ERP
calculated from the first five trials using a singular value
decomposition (SVD) and fitted a Battle-Lemarie wavelet model
to this time series. The upper panel of Fig. 8 shows the
corresponding time series estimate. This employed K=33 basis
functions, as determined by application of the wavelet shrinkage
algorithm (Donoho and Johnstone, 1994; Clyde et al., 1998). The
corresponding single-trial design matrix of our temporal model is
shown in the lower panel of Fig. 8. This matrix was extended to the
multiple-trial case using Eq. (10), and then used for source
reconstruction.

Because it is impractical to present the source estimates for all
time instants, we will show results for a single time point. Fig. 9
shows the true and estimated PCD, averaged over trials and
normalized to the respective maximum absolute values, for
t=200 ms. Note that, at this latency, both spatial profiles are



Fig. 7. Results of the VB-GLM approach with an overspecified temporal model. Upper panel: Estimated spatial precisions, αˆk, for each regression coefficient.
Lower panels: Estimated regression coefficients ŵk. Coefficients 1 and 2 correspond to the regressors used to generate the simulated data and are correctly
reconstructed (compare to Fig. 5). Coefficients 3 and 4 corresponding to the spurious regressors, are shrunk toward zero. The maximum of the scale has the
following values (from left to right): 5.72, 5.72, 0.03, and 0.02. Note that the maximum of the scale for Regression Coefficient 2 has been set to the maximum of
Regression Coefficient 1 for comparison.
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activated and correspond to negative peaks of activity. This pattern
is satisfactorily recovered by VB-GLM.
Spatial vs. spatio-temporal approach
In order to quantitatively assess the effect of the temporal prior,

we compared the results of our full VB-GLM approach to a limited
version where the temporal prior is not used. This is achieved by
using X= IT and Z=0M×T. In this case, the three-level PGM
depicted in Fig. 2 reduces to the two-level one in Fig. 1, which
underlies the majority of the “instantaneous” approaches reported
in the literature. In our case, given the spatial Laplacian prior that
we have assumed for the regression coefficients, this reduced
model can be considered to be equivalent to an “instantaneous”
LORETA solution (Pascual-Marqui et al., 1994).

We used two measures for comparison. First, we calculated the
receiver operating characteristic (ROC) for the two approaches.
This is a plot of the sensitivity versus 1 minus the specificity, and
was generated by declaring a generator to be active if the effect size
was larger than some arbitrary threshold. Although ROC curves
have been extensively applied to evaluate the detection accuracy of
diagnostic imaging techniques, they do not provide an explicit
assessment of localization accuracy. Therefore, we also calculated
the distance-based localization receiver operating characteristic
(DL-ROC) (Biscay-Lirio et al., 1992). This curve describes the
variation of localization error over the range of arbitrary thresholds
used (see Appendix A).

The results for t=200 ms are shown in Fig. 10 (right panel). As
can be seen, the VB-GLM outperforms the instantaneous approach
in both detection and localization accuracy. The results also
indicate that increased sensitivity can be achieved while maintain-
ing high specificity. Additionally, the source reconstruction
obtained with VB-GLM is less blurred and contains less ghosting
(the curse of traditional linear inverse solutions).

Another perspective on these simulations is given by the
temporal evolution of the activity for the generator of maximum
amplitude at t=200 ms. This is shown in Fig. 11. We see that the
estimated VB-GLM time course is much smoother than with the
instantaneous approach. This is clearly a consequence of the
temporal prior used.
VB-GLM vs. minimum variance beamformer
We have demonstrated that VB-GLM is capable of recovering

highly correlated sources, which has been reported not to be the
case for the minimum variance beamformer (MV-BF) (Sahani and



Fig. 8. Definition of the wavelet temporal model used for source
reconstruction of simulated data. (A) Fitting of the data first eigenvector
with K=33 Battle-Lemarie wavelets as calculated using wavelet shrinkage.
(B) Image of the corresponding single-trial design matrix. The leftmost
columns contain lower frequencies with progressively higher frequencies to
the right. This design matrix is replicated over trials using Eq. (10).
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Nagarajan, 2004). This motivated an empirical comparison
between the two approaches. For this, Eqs. (22) and (23) for the
MV-BF were implemented and applied to the simulated data
described previously. Additionally, data from a simulation
comprising a single left-occipital source were analyzed with both
methods. The time series for this single source simulation was
given by Regressor 1 in Fig. 6. The rest of the simulation settings
were kept as before. The initial MV-BF estimates were found to
contain erroneously large values near the centre of the sphere used
for the forward calculation (Sekihara et al., 2001). This is because
the norm of the lead field becomes very small in that region. To
avoid these artefacts, a normalized lead-field matrix was used in
Eq. (23) (Van Veen et al., 1997; Robinson and Vrba, 1999).

The true and estimated PCDs at t=200 ms for the two simulated
data sets and for both the VB-GLM and MV-BF approaches are
shown in Fig. 12. All maps have been normalized to their
respective maximum absolute values. As can be seen, VB-GLM
outperforms MV-BF in the two cases. In the single-source case, the
MV-BF reconstruction, although giving activity in the area of the
true activation, it is significantly more blurred than the VB-GLM
solution. Moreover, MV-BF is unable to recover multiple
correlated sources, as expected.

A quantitative comparison was also carried out by calculating
the ROC and DL-ROC curves for all cases. The results are shown
in Fig. 13. In all cases, VB-GLM showed higher sensitivity for any
level of specificity. This is critical in the case of multiple correlated
sources, for which MV-BF performed very poorly. Note also that
even in the single-source case, where MV-BF showed its best
detection accuracy (ROC), its localization accuracy (DL-ROC) was
very low.

Face ERPs

This section presents an analysis of a face processing ERP data
set from Henson et al. (2003). Details of the experimental
paradigm as well as the full data set can be found at www.fil.
ion.ucl.ac.uk/spm/data/mmfaces.html.

Experimental paradigm
The experiment involved randomized presentation of 86 faces

and 86 scrambled faces, as described in Fig. 14. Half of the faces
are familiar and half unfamiliar, creating three event-types
(conditions) in total, although only the basic contrast of faces vs.
scrambled faces is described here. The faces condition in this case
was obtained by collapsing over familiarity.

The scrambled faces were created by 2-D Fourier transforma-
tion, random phase permutation, inverse transformation and
outline-masking of each face. Thus, faces and scrambled faces
are closely matched for low-level visual properties such as spatial
frequency power density. The subject had to judge the left–right
symmetry of each stimulus (face and scrambled) around an
imaginary vertical line through the centre of the image. Faces were
presented for 600 ms, every 3600 ms.

The EEG data were acquired on a 128-channel BioSemi
ActiveTwo system (see Fig. 5), sampled at 1024 Hz, plus
electrodes on the left earlobe, right earlobe, and two each to
measure HEOG and VEOG. The data were referenced to the
average of left and right earlobe electrodes and epoched from
−200 ms to +600 ms. These epochs were then detrended and
examined for artefacts, defined as time points that exceeded an
absolute threshold of 120 μV (mainly in the VEOG). A total of 29
of the 172 trials were rejected.

Data analysis
The epochs were averaged according to the two trial types faces

(F) and scrambled faces (S) to produce condition specific ERPs, for
visualization purposes. The first clear difference F–S was maximal
around 170 ms, appearing as an enhancement of a negative
component (peak N170) at occipito-temporal channels, or
enhancement of a positive peak near Cz (e.g., channel C1). These
effects are shown as a differential topography and as time series in
Fig. 15.

The source reconstruction method (VB-GLM) was then applied
to the single-trial (unaveraged) data. Before applying the model,
the data were first down-sampled by a factor of 4, and the 128
samples following stimulus onset were extracted. These steps were
taken as we used WaveLab to generate the wavelet bases (for the
GLM) which uses a pyramidal algorithm to compute coefficients,
thus requiring the number of samples to be a power of two.

We then extracted the first eigenvector of the ERP for each
condition using SVD and fitted Battle-Lemarie wavelet models to

http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces.html
http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces.html


Fig. 9. True and VB-GLM source estimates for the simulated data, based on the wavelet temporal model. The left panel indicates the time point of interest
(t=200 ms). At this latency, the two simulated sources show simultaneous negative peaks. The right panel shows the true PCD at t=200 ms, as well as the
corresponding VB-GLM estimate, averaged across trials. The two maps have been normalized to their respective maximum absolute values.
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these time series. Fig. 16 shows the corresponding time series
estimates. We employed K=23 and K=30 basis functions for
conditions F and S, respectively, as determined by wavelet
shrinkage (Donoho and Johnstone, 1994). These functions were
then used to construct the single-trial design matrices for the two
conditions, each comprising the Battle-Lemarie basis (see Fig. 16).
These matrices were then repeated for all trials to produce the
multiple-trial condition-specific design matrices of dimensions
11,008×23 and 11,008×30 (see Eq. (10)). Finally, the full design
matrix for all trials and for the two conditions was constructed as a
block diagonal matrix, where each block contained the multiple-
trials design matrix for each condition. This matrix, which fully
integrates the experimental design, is of dimension 22,016×53.

All trials for faces and scrambled faces were then concatenated
to form a vector of 22,016 elements at each electrode. The sensor
data matrix was then of dimension 128×22,016. The source space
used was the same as for the simulations.

We then applied the source reconstruction algorithm and
obtained a solution after 6 min of processing. The estimated PCDs
averaged across trials for conditions F and S at t=170 ms, are shown
in Fig. 17. The two solutions have been normalized to the maximum
of the solution for condition F. As can be seen, the spatial distribution
of the sources in both cases show bilateral activity in the fusiform
area, with the cluster of maximum activation in the right hemisphere.
The temporal waveforms corresponding to the generators with
maximum activity in the two conditions are also shown in Fig. 17
(right panel). As expected, maximum differences between condi-
tions are obtained for t=170 ms.

The overall effect of faces was obtained by applying the
appropriate contrast to the fitted source reconstruction and is
shown more clearly in Fig. 18. The image in the upper panel shows
differences between conditions at each generator, normalized to the
maximum positive difference. The overall activation pattern shows
a number of clusters of positive and negative differences. By
convention we have constrained the PCD to be perpendicular to the
cortical surface and directed outward. Then positive differences
can be interpreted as an increased outward or a decreased inward
PCD, while negative differences can be associated with decreased
outward or an increased inward PCD.

In order to better characterize the effect of faces, the positive
and negative differences were normalized to their respective
maximum values and thresholded at 30% and 80%. The results are
shown in the lower panels of Fig. 18. At 30%, four main clusters
appear at (i) right fusiform, (ii) left fusiform (iii) right temporal,
and (iv) anterior frontal regions. With an 80% threshold, only the
right fusiform and right temporal activations are present. These
activations are consistent with previous fMRI and MEG analyses
(Henson et al., 2003) and the classical “core model” for face
recognition and perception (Haxby et al., 2002; Gobbini and
Haxby, 2007).

Discussion

This paper has described a model-based spatio-temporal
deconvolution approach to source reconstruction. Sources are
reconstructed by inverting a forward model comprising a temporal
process as well as a spatial process. This approach relies on the fact
that EEG and MEG signals are extended in time as well as space.

It rests on the notion that MEG and EEG reflect the neuronal
activity of a spatially distributed dynamical system. Depending on
the nature of the experimental task, this activity can be highly
localized or highly distributed and the dynamics can be more, or
less, complex. At one extreme, listening for example to simple
auditory stimuli produces brain activations that are highly localized



Fig. 10. Spatial effects: VB-GLM vs. instantaneous solution. The left panels show ROC and DL-ROC curves corresponding to VB-GLM and the instantaneous
solution for t=200 ms. In this case, the instantaneous solution was obtained by reducing the full VB-GLM approach to the traditional two-level model of Fig. 1
(X= I, Z=0). The right panels show the corresponding PCD estimate averaged across trials. The two maps have been normalized to their respective maximum
absolute values.

Fig. 11. Temporal effects: VB-GLM vs. instantaneous solution. The figure
shows the time course of the VB-GLM and instantaneous estimations for the
generator with maximum activation at t=200 ms. The two time courses
have been normalized to the maximum absolute value of the true activity.
The use of temporal priors leads to smoother estimated time courses.
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in time and space. This activity is well described by a single dipole
located in brainstem and reflecting a single burst of neuronal
activity at, e.g., t=20 ms post-stimulus. More complicated tasks,
such as oddball paradigms, elicit spatially distributed responses
and more complicated dynamics that can appear in the ERP as
damped sinusoidal responses. In this paper we have taken the view
that by explicitly modelling these dynamics one can obtain better
source reconstructions.

Compared to previous spatio-temporal models (Baillet and
Garnero, 1997; Schmidt et al., 2000; Galka et al., 2004; Yamashita
et al., 2004; Daunizeau et al., 2005), our algorithm perhaps
embodies stronger dynamic constraints. But the computational
simplicity of fitting GLMs, allied to the efficiency of variational
inference, results in a relatively fast algorithm. Also, the GLM can
accommodate damped sinusoidal and wavelet approaches that are
ideal for modelling transient and nonstationary responses.

The dynamic constraints implicit in our model help to
regularize the solution. Indeed, with M sensors, G sources, T time
points and K temporal, if KbMT/G the inverse problem is no
longer underdetermined. In practice, however, spatial regulariza-
tion will still be required to improve estimation accuracy.

The method proposed in the present paper embodies well-known
phenomenological descriptions of evoked responses. A similar
method has recently been proposed in Friston et al. (2006), but the
approaches differ in a number of respects. First, in Friston et al.
(2006), scalp dataYare (effectively) projected onto a temporal basis



Fig. 12. Qualitative comparison between VB-GLM andMV-BFmethods. The figure shows the true PCD spatial distribution for the single source (upper row) and
the multiple correlated sources (lower row) at t=200 ms, as well as the corresponding VB-GLM and MV-BF source reconstructions. All maps have been
normalized to their respective maximum absolute values.
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setX and source reconstructions aremade in this reduced space. This
results in a computationally efficient procedure based on restricted
maximum likelihood (ReML), but one in which the between-trial
variance is not taken into account. This will result in inferences
about W and J which are overconfident. If one is interested in
population inferences based on summary statistics (i.e., Ŵ) from a
group of subjects, then this does not matter. If, however, one wishes
to make within-subject inferences, then VB-GLM is the preferred
approach. Second, in Friston et al. (2006), the model has been
augmented to account for trial-specific responses. This treats each
trial as a “random effect” and provides a method for making
inferences about induced responses. The algorithm described in this
paper, however, is restricted to treating trials as fixed effects. This
mirrors standard first-level analyses of fMRI in which multiple trials
are treated by forming concatenated data and design matrices.
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Appendix A

A.1. Implementation details

A practical difficulty with the update equations for the PCD
is that the covariance matrix Σ̂J is of dimension G×G. Even
low-resolution source grids typically contain GN1000 elements.
This therefore presents a problem. A solution is found, however,
with use of a singular value decomposition (SVD). First, we
define a modified lead-field matrix K̄=Ω̂1/2KΛ̂−1/2

and compute
its SVD

K̄ ¼ USVT ¼ UV̄ ðA1Þ

where V̄ is an M×G matrix, the same dimension as the lead
field K. It can then be shown using the matrix inversion lemma
(Golub and Van Loan, 1996) that

Σ̂J ¼ Λ̂
�1=2ðIG � PÞ Λ̂�1=2

P ¼ V̄
T ðIM þ SST Þ�1V̄ ðA2Þ

which is simple to implement computationally, as it only
requires inversion and square root of diagonal matrices.

Source estimates can be computed as shown in Eq. (20). In
principle, this means the estimated sources over all time points and
source locations are given by

̂J ¼ Σ̂JK
T V̂Yþ Σ̂JΛ̂Ŵ

T
XT ðA3Þ

In practice, however, it is inefficient to work with such a large
matrix during estimation. We therefore do not implement Eqs. (19)
and (20) but, instead, work in the reduced space Ĵx=ĴX which are



Fig. 14. Description of the face processing experiment. The experiment involved randomized presentation of 86 faces and 86 scrambled faces. Half of the faces
were familiar and half unfamiliar, creating three event-types (conditions) in total. The subject had to judge the left–right symmetry of each stimulus (face and
scrambled) around an imaginary vertical line through the centre of the image. Faces were presented for 600 ms, every 3600 ms.

Fig. 13. Quantitative comparison between VB-GLM and MV-BF methods. The figure shows the ROC and DL-ROC curves corresponding to VB-GLM andMV-
BF methods for the single-source (upper row) and the multiple correlated sources (lower row) at t=200 ms.
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Fig. 15. Face processing ERP. Left panel shows the topographic map of the ERP data at t=170 ms (N170). At this latency, the difference of faces–scrambled
faces is maximum. The time courses for the two conditions at electrode C1 are shown in the right panel.

Fig. 16. Definition of the wavelet temporal model used for source reconstruction of the face processing data set. Upper panels: Fitting of the data first eigenvector
for conditions faces and scrambled faces, respectively, with K=23 and K=30 Battle-Lemarie wavelets as calculated by wavelet shrinkage. Lower panels:
Images of the design matrices (for a single trial) for the two conditions.
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Fig. 17. Left panels show the VB-GLM source estimates for the two conditions at t=170 ms, averaged across trials. The two images have been normalized with
respect to the maximum activity in the faces condition. The right panel shows the normalized average of the source time courses for the generator with maximum
activity in the two conditions.
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the sources projected onto the design matrix. These projected
source estimates are given by

̂JX ¼ ̂JX

¼ Σ̂JKT V̂YXþ Σ̂J ̂ΛŴ
T
XTX

¼ AKXYXþAΛWXTX

ðA4Þ

where YX and XTX can be pre-computed and the intermediate
quantities are given by

AKX ¼ Σ̂JKT V̂

¼ ð Λ̂�1
KT � P ̂Λ

�1=2
KT ÞV̂

AΛW ¼ Σ̂J ̂ΛŴ
T

¼ ðŴT � ̂Λ
�1=2

P ̂Λ
1=2

Ŵ
T Þ

ðA5Þ

Because these matrices are only of dimension G×M and G×K,
respectively, ĴX can be efficiently computed. The term XTĵg · in Eq.
(24) is then given by the gth row of ĴX.

The intermediate quantities can also be used to compute model
predictions as

Ŷ ¼ K ̂J

¼ KAKXYþKAΛWXT
ðA6Þ
The entry (m,t) in Ŷ then corresponds to the km
T
·ĵ·t term in Eq.

(27). Other computational savings are as follows. For Eq. (27), we
use the result

kT
md Σ̂Jd tkmd ¼ 1

̂rm

XM
mV¼1

s2mVmVu
2
mmV

ðs2mVmVþ 1Þ ðA7Þ

where sij and uij are the (i,j)th entries in S and U, respectively. For
Eq. (26) we use the result

fΣ̂Jggg ¼
1
̂kg

1� ̂kg
XM
g V¼1

s2g Vg Vv
2
gg V

s2g Vg Vþ 1

 !
ðA8Þ

where vij is the (i,j)th entry in V.

A.2. Distance based localization receiver operating characteristic
(DL-ROC)

Consider a continuous image I within which a source S is
required to be localized and let D be the detection region defined
by the classifier. In our case, the classifier was defined by declaring
a generator to be active (included in the source) if the estimated
PCD at the given generator exceeded a specified threshold. The
region D then defines the labelling of each generator X by the
classifier as included (X \∈D) or not included (X∈ I\D) in the
source.



Fig. 18. Overall effect of faces. The upper panel shows the normalized differences of faces minus scrambled faces at t=170 ms. In the lower panels, positive and
negative differences have been normalized to the maximum positive and negative activities, respectively. The images show the sources that survive a 30% (lower
left) and an 80% (lower right) threshold.
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Now denote by A\B, A∪B and A∩B the difference, union and
intersection operations on sets A, B of generators in I. The sets
D\S, S\D, D∩S and (I∩D)∪ (I∩S) are formed by the generators
with false positive (FP), false negative (FN), true positive (TP) and
true negative (TN) classifications, respectively. Thus, the regions
D\S and S\D contain all the incorrectly classified generators.

Let D2(X,A) be the distance of a generator X from a (non-
empty) region A defined as:

D2ðX ;AÞ ¼ inf
YaA

d2ðX ; Y Þ ðA9Þ

where d2 is the geodesic distance between generators, and “inf”
denotes the greatest lower bound of a set of numbers, or infimum.
And let dI, be the diameter of I, i.e., dI= sup d2(X,Y), where “sup”
denotes the least upper bound, or supremum, with respect to all the
pixels X and Y of I. We can then calculate the re-scaled distances d
(X,Y)=d2(X,Y)/dI and d(X,A)=d2(X,A)/dI, for any generators X, Y
and any region A. Based on this, supremum measures of false
positive (FPLE) and false negative localization error (FNLE), for
specified regions D and S are then defined as:

FPLEðD; SÞ ¼ sup
XaD

ðX ; SÞ

FNLEðD; SÞ ¼ sup
XaS

ðX ;DÞ ðA10Þ

Average and integral measures of FPLE and FNLE can also be
defined (Biscay-Lirio et al., 1992).

For a given source S, the detection region D and therefore the
measures FPLE(D,S) and FNLE(D,S) depend on the classifier’s
decision threshold C, which determines the level of certainty used
by the classifier to consider a generator X as belonging to the
source (i.e., X∈D). Then, by analogy with conventional ROC
methodology, the variation of the measures of localization error
over the range of the classifier’s decision thresholds can be
described with the curve (FPLE(C),1−FNLE(C)). This is called
the distance-based localization receiver operating characteristic
(DL-ROC).
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